Nessun oggetto della modifica
Nessun oggetto della modifica
 
(4 versioni intermedie di uno stesso utente non sono mostrate)
Riga 13: Riga 13:
   <div class="chapter-abstract">
   <div class="chapter-abstract">
{{ArtBy|autore=Gianni Frisardi}}
{{ArtBy|autore=Gianni Frisardi}}
     <h2>Abstract</h2>
     <h2>Abstract</h2>'''Rethinking Mastication: A Neurofunctional Model for the 21st Century'''
   
Il sistema masticatorio umano, tradizionalmente interpretato come un insieme biomeccanico di ossa, denti e muscoli, è oggi oggetto di una profonda revisione concettuale. Si sta affermando una visione più complessa e dinamica che integra fattori neurofisiologici e anatomici, in linea con il modello di "cambiamento di paradigma" proposto da Thomas Kuhn. In particolare, discipline come la gnatologia, l’ortodonzia e la protesi dentaria si confrontano sempre più con limiti delle interpretazioni biomeccaniche classiche, le quali non riescono a spiegare certi fenomeni clinici, come la simmetria funzionale osservata in pazienti con evidenti asimmetrie occlusali.


In risposta a queste incongruenze, il progetto '''Masticationpedia''' propone un nuovo quadro teorico basato sulla '''scienza della complessità'''. Anziché trattare le malocclusioni come anomalie strutturali da correggere meccanicamente, introduce il concetto di '''"disformismo occlusale"''': un approccio integrato che considera l’interazione dinamica tra architettura dentale, controllo neurale, riflessi, propriocezione e adattabilità funzionale.
The human masticatory system—long regarded as a biomechanical structure composed of teeth, bones, and muscles—is now emerging as a complex adaptive system. Influenced by both anatomical architecture and neurophysiological modulation, chewing is not simply a mechanical act, but a dynamic behavior shaped by cortical and peripheral interactions.


Un elemento centrale di questo paradigma è la rivalutazione delle evidenze elettrofisiologiche nella valutazione della funzione occlusale. Studi recenti, basati su potenziali evocati motori, latenza dei riflessi mandibolari e simmetria neuromuscolare misurata tramite EMG, dimostrano che soggetti con occlusioni apparentemente non ideali possono comunque esibire funzioni masticatorie efficienti e simmetriche. Questo suggerisce che il sistema nervoso centrale e periferico ha un ruolo attivo nel compensare deviazioni anatomiche — un concetto che la biomeccanica pura non riesce a spiegare.
This shift aligns with Thomas Kuhn’s theory of scientific paradigm shifts: when traditional models fail to explain observed anomalies, new frameworks must arise. In dentistry—especially in gnathology, prosthodontics, and orthodontics—classical biomechanics increasingly fails to account for puzzling clinical findings. One of the most striking is functional symmetry in patients with clear occlusal asymmetries.


Un esempio clinico emblematico presentato nel testo mostra un paziente con malocclusione evidente che, tuttavia, manifesta risposte simmetriche nei riflessi trigeminali e nei potenziali evocati motori. Questo dato mette in discussione l’idea che una disarmonia morfologica implichi automaticamente un deficit funzionale, rafforzando l’importanza di una valutazione occlusale neurofisiologica.<gallery widths="125" heights="80" mode="slideshow">
=== 🧬 From Malocclusion to Occlusal Dysmorphism ===
File:Occlusal Centric view in open and cross bite patient.jpg|<small>'''Figure 1a:''' Centric occlusal view of a patient with crossbite and open bite.</small>
File:Bilateral Electric Transcranial Stimulation.jpg|<small>'''Figure 1b:''' Bilateral transcranial stimulation: symmetry of the masseters.</small>
File:Jaw Jerk .jpg|<small>'''Figure 1c:''' Jaw jerk reflex: confirmed functional symmetry.</small>
File:Mechanic Silent Period.jpg|<small>'''Figure 1d:''' Mechanical silent period: balanced bilateral activation.</small>
</gallery>Di conseguenza, l’approccio diagnostico e terapeutico in odontoiatria deve evolversi. Le strategie morfocentriche tradizionali, focalizzate su un allineamento ideale dei denti, rischiano di ignorare l’equilibrio neuromuscolare preesistente, causando possibili ricadute o discomfort post-trattamento. Al contrario, modelli terapeutici ispirati a concetti come l’'''OrthoNeuroEvokedGnathodontics''' mirano a collaborare con i meccanismi regolatori del corpo, promuovendo l’adattamento e l’omeostasi.


Masticationpedia si propone quindi non solo come archivio di conoscenze, ma come bussola metodologica per esplorare questo nuovo territorio epistemologico. Integra principi della teoria dei sistemi, della neurofisiologia e della medicina complessa, offrendo nuovi indicatori clinici — come le mappe di eccitabilità corticale e i pattern di latenza riflessa — e ridefinendo concetti come “normale” e “patologico” in chiave funzionale.
Rather than treating “malocclusion” as a static defect, Masticationpedia proposes the term '''occlusal dysmorphism''', emphasizing the interplay between morphology and neuroadaptive function.
 
This model incorporates:
* Proprioceptive feedback
* Reflex circuit modulation
* Cortical plasticity
* Functional compensation by the central nervous system
 
Rather than correcting structure alone, clinicians are invited to understand how the body adapts—often brilliantly—to what was once deemed a dysfunction.
 
=== 📊 Electrophysiological Evidence of Adaptation ===
 
Electrophysiological data—including motor evoked potentials, jaw reflex latency, and bilateral EMG mapping—have demonstrated:
* Efficient mastication in patients with severe occlusal anomalies
* Functional symmetry despite morphological disharmony
* Activation of cortical regulation to maintain balance
 
<blockquote>''A patient with orthognathic malocclusion exhibited perfectly symmetrical trigeminal reflexes and cortical potentials. Can morphology alone explain this?''</blockquote>
 
These findings challenge the assumption that structure dictates function.
 
=== 🦷 Clinical Case: Functional Symmetry in Morphological Asymmetry ===
 
A real clinical case highlights the paradigm shift.
 
Despite evident asymmetries in the dental arch—such as unilateral crossbite and dental midline deviation—the patient exhibited:
* Balanced masseter  activation
* Symmetrical chewing cycles
* Perfect bilateral reflex latency patterns
 
'''Figures below illustrate:'''
* Occlusal photograph with asymmetric contact zones Fig. 1b
[[File:Occlusal Centric view in open and cross bite patient.jpg|centro|300x300px]]<small>'''Figure 1a:''' Centric occlusal view of a patient with crossbite and open bite.</small>
 
* Symmetrical activation of masseter muscles on bilateral Transcranial Electric Stimulation (Fig.1b)
 
[[File:Bilateral Electric Transcranial Stimulation.jpg|centro|300x300px]]<small>'''Figure 1b:''' Bilateral transcranial stimulation: symmetry of the masseters.</small>
 
* Trigeminal reflexes diagrams showing bilateral equilibrium Fig. 1c, 1d
[[File:Jaw Jerk .jpg|centro|300x300px]]<small>'''Figure 1c:''' Jaw jerk reflex: confirmed functional symmetry.</small>
 
[[File:Mechanic Silent Period.jpg|centro|300x300px]]<small>'''Figure 1d:''' Mechanical silent period: balanced bilateral activation.</small>
 
<blockquote>''Morphological asymmetry does not always lead to functional asymmetry.''</blockquote>
=== 🧑‍⚕️ From Morphology to Methodology ===
 
Traditional orthodontic and prosthetic strategies, if based purely on morphology, may:
* Ignore existing neuroadaptive balances
* Trigger relapse or discomfort
* Fail to align with functional realities
 
Masticationpedia supports models like '''OrthoNeuroEvokedGnathodontics''', which adapt therapy to each patient’s neurophysiological individuality.
 
=== 🤝 A New Clinical Interdisciplinarity ===
 
This emerging model requires cross-disciplinary collaboration:
* Dentists, orthodontists, prosthodontists
* Neurologists, physiotherapists
* Researchers in neurophysiology and systems medicine
 
Together, they can co-develop diagnostic and therapeutic strategies grounded in '''complexity science''' and '''neuroplasticity'''.
 
<blockquote>''“Normality” is no longer defined by symmetry alone, but by functionality.''</blockquote>
 
=== 🧭 Masticationpedia: A Methodological Compass ===
 
We envision Masticationpedia as more than a repository. It is a '''scientific tool''' guiding clinicians toward:
* New indicators (e.g., latency patterns, cortical excitability)
* Functional rather than morphological diagnostics
* Evidence-based, patient-specific treatments
 
=== 💬 Continue the Conversation ===
 
This chapter opens a broader scientific dialogue. We invite you to not just read—but contribute with disccussion and comments on Linkedin platform


Infine, il testo sottolinea l’urgenza di una vera '''interdisciplinarità clinica''', superando le barriere tra odontoiatria, fisioterapia e neurologia, e promuovendo un linguaggio comune. In questa prospettiva, Masticationpedia si presenta come un catalizzatore per un cambiamento di paradigma, orientato verso strategie terapeutiche più resilienti, personalizzate e in armonia con la complessità della fisiologia umana.
</div>
</div>



Versione attuale delle 14:55, 21 lug 2025

Introduction

Masticationpedia
Masticationpedia
Article by: Gianni Frisardi

Abstract

Rethinking Mastication: A Neurofunctional Model for the 21st Century

The human masticatory system—long regarded as a biomechanical structure composed of teeth, bones, and muscles—is now emerging as a complex adaptive system. Influenced by both anatomical architecture and neurophysiological modulation, chewing is not simply a mechanical act, but a dynamic behavior shaped by cortical and peripheral interactions.

This shift aligns with Thomas Kuhn’s theory of scientific paradigm shifts: when traditional models fail to explain observed anomalies, new frameworks must arise. In dentistry—especially in gnathology, prosthodontics, and orthodontics—classical biomechanics increasingly fails to account for puzzling clinical findings. One of the most striking is functional symmetry in patients with clear occlusal asymmetries.

🧬 From Malocclusion to Occlusal Dysmorphism

Rather than treating “malocclusion” as a static defect, Masticationpedia proposes the term occlusal dysmorphism, emphasizing the interplay between morphology and neuroadaptive function.

This model incorporates:

  • Proprioceptive feedback
  • Reflex circuit modulation
  • Cortical plasticity
  • Functional compensation by the central nervous system

Rather than correcting structure alone, clinicians are invited to understand how the body adapts—often brilliantly—to what was once deemed a dysfunction.

📊 Electrophysiological Evidence of Adaptation

Electrophysiological data—including motor evoked potentials, jaw reflex latency, and bilateral EMG mapping—have demonstrated:

  • Efficient mastication in patients with severe occlusal anomalies
  • Functional symmetry despite morphological disharmony
  • Activation of cortical regulation to maintain balance

A patient with orthognathic malocclusion exhibited perfectly symmetrical trigeminal reflexes and cortical potentials. Can morphology alone explain this?

These findings challenge the assumption that structure dictates function.

🦷 Clinical Case: Functional Symmetry in Morphological Asymmetry

A real clinical case highlights the paradigm shift.

Despite evident asymmetries in the dental arch—such as unilateral crossbite and dental midline deviation—the patient exhibited:

  • Balanced masseter activation
  • Symmetrical chewing cycles
  • Perfect bilateral reflex latency patterns

Figures below illustrate:

  • Occlusal photograph with asymmetric contact zones Fig. 1b
Figure 1a: Centric occlusal view of a patient with crossbite and open bite.
  • Symmetrical activation of masseter muscles on bilateral Transcranial Electric Stimulation (Fig.1b)
Figure 1b: Bilateral transcranial stimulation: symmetry of the masseters.
  • Trigeminal reflexes diagrams showing bilateral equilibrium Fig. 1c, 1d
Figure 1c: Jaw jerk reflex: confirmed functional symmetry.
Figure 1d: Mechanical silent period: balanced bilateral activation.

Morphological asymmetry does not always lead to functional asymmetry.

🧑‍⚕️ From Morphology to Methodology

Traditional orthodontic and prosthetic strategies, if based purely on morphology, may:

  • Ignore existing neuroadaptive balances
  • Trigger relapse or discomfort
  • Fail to align with functional realities

Masticationpedia supports models like OrthoNeuroEvokedGnathodontics, which adapt therapy to each patient’s neurophysiological individuality.

🤝 A New Clinical Interdisciplinarity

This emerging model requires cross-disciplinary collaboration:

  • Dentists, orthodontists, prosthodontists
  • Neurologists, physiotherapists
  • Researchers in neurophysiology and systems medicine

Together, they can co-develop diagnostic and therapeutic strategies grounded in complexity science and neuroplasticity.

“Normality” is no longer defined by symmetry alone, but by functionality.

🧭 Masticationpedia: A Methodological Compass

We envision Masticationpedia as more than a repository. It is a scientific tool guiding clinicians toward:

  • New indicators (e.g., latency patterns, cortical excitability)
  • Functional rather than morphological diagnostics
  • Evidence-based, patient-specific treatments

💬 Continue the Conversation

This chapter opens a broader scientific dialogue. We invite you to not just read—but contribute with disccussion and comments on Linkedin platform