Nessun oggetto della modifica
Etichetta: Annullato
Nessun oggetto della modifica
 
(6 versioni intermedie di uno stesso utente non sono mostrate)
Riga 1: Riga 1:
{{main menu it
{{main menu  
|link to German= Hauptseite
|link to German= Hauptseite
|link to Spanish= Pàgina Principal
|link to Spanish= Pàgina Principal
Riga 11: Riga 11:


{{ArtBy|autore=Gianni Frisardi}}
{{ArtBy|autore=Gianni Frisardi}}


== '''Abstract''' ==
== '''Abstract''' ==
Il sistema masticatorio, che comprende denti, occlusione, muscoli, articolazioni e sistema nervoso centrale e periferico, è sempre più compreso come un sistema complesso piuttosto che come un semplice meccanismo biomeccanico. Questo cambiamento di prospettiva si allinea alle fasi dei cambiamenti di paradigma di Thomas Kuhn, dove le anomalie nei modelli tradizionali innescano la ricerca di nuovi paradigmi. Nel contesto di Masticationpedia, emerge un nuovo approccio interdisciplinare alla diagnosi e al trattamento della malocclusione, concentrandosi su "Dismorfismi Occlusali" piuttosto che su "Malocclusioni". Recenti progressi nei test elettrofisiologici, come i potenziali evocati motori e i riflessi mandibolari, rivelano una simmetria funzionale nel sistema masticatorio, anche in pazienti con discrepanze occlusali. Questa scoperta sfida la comprensione tradizionale della malocclusione, suggerendo che le dinamiche neuromuscolari giocano un ruolo cruciale nel mantenimento della funzione masticatoria. Di conseguenza, sono necessarie diagnosi interdisciplinari che considerino sia i fattori occlusali che quelli neuromuscolari per una diagnosi accurata e un trattamento efficace.  
The masticatory system, which includes teeth, occlusion, muscles, joints, and the central and peripheral nervous system, is increasingly understood as a complex system rather than a simple biomechanical mechanism. This shift in perspective aligns with Thomas Kuhn's stages of paradigm changes, where anomalies in traditional models trigger the search for new paradigms. In the context of Masticationpedia, a new interdisciplinary approach to the diagnosis and treatment of malocclusion emerges, focusing on "Occlusal Dysmorphisms" rather than "Malocclusions." Recent advances in electrophysiological tests, such as motor evoked potentials and mandibular reflexes, reveal functional symmetry in the masticatory system, even in patients with occlusal discrepancies. This discovery challenges the traditional understanding of malocclusion, suggesting that neuromuscular dynamics play a crucial role in maintaining masticatory function. Consequently, interdisciplinary diagnoses that consider both occlusal and neuromuscular factors are necessary for accurate diagnosis and effective treatment.


Questo cambiamento di paradigma ha implicazioni per le attuali terapie riabilitative, tra cui ortodonzia e protesi, che si sono tradizionalmente concentrate sul raggiungimento della stabilità occlusale. Tuttavia, considerare il sistema masticatorio come un sistema complesso richiede un approccio integrativo che incorpora sia fattori estetici che neurofisiologici per prevenire le recidive ed ottenere una stabilità funzionale a lungo termine. Il campo emergente dei trattamenti OrthoNeuroGnathodontici esemplifica questo approccio interdisciplinare, offrendo strategie innovative per affrontare i disturbi masticatori.
This paradigm shift has implications for current rehabilitative therapies, including orthodontics and prosthetics, which have traditionally focused on achieving occlusal stability. However, considering the masticatory system as a complex system requires an integrative approach that incorporates both aesthetic and neurophysiological factors to prevent relapses and achieve long-term functional stability. The emerging field of OrthoNeuroGnathodontic treatments exemplifies this interdisciplinary approach, offering innovative strategies to address masticatory disorders.


Guardando il sistema masticatorio attraverso la lente della scienza della complessità, il campo dell'odontoiatria può ampliare la propria comprensione della stabilità e della disfunzione occlusale, portando infine a nuovi paradigmi di trattamento che migliorano i risultati per i pazienti. Questo nuovo modello non sostituisce i trattamenti tradizionali, ma cerca di arricchirli con una prospettiva interdisciplinare più ampia, in linea con l'evoluzione della scienza della riabilitazione masticatoria.
Viewing the masticatory system through the lens of complexity science, the field of dentistry can expand its understanding of occlusal stability and dysfunction, ultimately leading to new treatment paradigms that improve patient outcomes. This new model does not replace traditional treatments but seeks to enrich them with a broader interdisciplinary perspective, in line with the evolution of masticatory rehabilitation science.


<div class="mw-collapsible mw-collapsed" style="border: 2px solid #4a90e2; padding: 15px; background: #eef5ff; font-size: 95%; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);">
<div class="mw-collapsible mw-collapsed" style="border: 2px solid #4a90e2; padding: 15px; background: #eef5ff; font-size: 95%; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);">
<b style="font-size: 110%; color: #004080;">🚀 Call for Authors – <span style="color:#c43db7;">Esplodi la tua genialità intellettuale!</span></b><br>
<b style="font-size: 110%; color: #004080;">🚀 Call for Authors – <span style="color:#c43db7;">Unleash Your Intellectual Brilliance!</span></b><br>
<span style="color: #666;">(Clicca per scoprire gli argomenti suggeriti per pubblicare su <b>Masticationpedia</b>)</span>
<span style="color: #666;">(Click to discover suggested topics for publishing on <b>Masticationpedia</b>)</span>


<div class="mw-collapsible-content" style="margin-top:10px; padding-top:10px;">
<div class="mw-collapsible-content" style="margin-top:10px; padding-top:10px;">
<p style="margin-bottom: 8px;">L'enciclopedia clinica dedicata alla <b>riabilitazione masticatoria</b> ti invita a proporre articoli sui seguenti temi chiave per rimanere aderente alla 'Mission' filosofico scientifica di Masticationpedia:</p>
<p style="margin-bottom: 8px;">The clinical encyclopedia dedicated to <b>masticatory rehabilitation</b> invites you to propose articles on the following key themes to stay aligned with the philosophical and scientific 'Mission' of Masticationpedia:</p>


* sistema masticatorio
* masticatory system
* nuovo paradigma
* new paradigm
* dinamiche neuromuscolari
* neuromuscular dynamics
* recidive
* relapses
* scienza della complessità
* complexity science
* Casi clinici complessi
* complex clinical cases


👨‍⚕️ Se sei un clinico o ricercatore visionario  inizia da <b>[[For Authors|qui]]</b> la tua pubblicazione<br>
👨‍⚕️ If you are a visionary clinician or researcher, start your publication from <b>[[For Authors|here]]</b><br>


</div>
</div>
</div>
</div>


==Ab ovo {{Tooltip|<sup>[1]</sup>|<ref><small>Latino per 'sin dall'inizio'</small></ref>|<small>Latino per 'sin dall'inizio'</small>|}}==
==Ab ovo {{Tooltip|<sup>[1]</sup>|<ref><small>Latin for 'from the beginning'</small></ref>|<small>Latin for 'from the beginning'</small>|}}==


Prima di addentrarci nell'analisi di Masticationpedia, dobbiamo prima introdurre alcune considerazioni preliminari, in particolare riguardo a due dimensioni fondamentali—sociale e scientifico-clinica—che caratterizzano sia l'era attuale che quella immediatamente precedente.
Before delving into the analysis of Masticationpedia, we must first introduce some preliminary considerations, particularly regarding two fundamental dimensions—social and scientific-clinical—that characterize both the current era and the one immediately preceding it.


===Le fasi del cambiamento di paradigma secondo Thomas Kuhn===
===The Phases of Paradigm Change According to Thomas Kuhn===


In the last hundred years, technological and methodological innovations {{Tooltip|<sup>[2]</sup>|<ref>{{cita libro|autore=Heft MW|autore2=Fox CH|autore3=Duncan RP|titolo=Assessing the Translation of Research and Innovation into Dental Practice|url=https://www.ncbi.nlm.nih.gov/pubmed/31590599|anno=2019|opera=JDR Clin Trans Res|DOI=10.1177/2380084419879391}}</ref>|<small>🧪 Cross-sectional study analyzing dental innovations of the last 30 years, identifying those that practicing dentists believe have most influenced patient care. 🧬 Thirty experts from the International Association for Dental Research selected the most relevant innovations, which were then submitted via questionnaire to U.S. dentists who graduated before 1995 and were clinically active for over 50% of the time. 🧩 The most cited innovations were adhesive materials (74.5%), dental implants (71.9%), direct bonding (71.2%), magnifying lenses (54.7%), universal infection control precautions (48.6%), and digital imaging (46.0%), with differences between generalists and specialists: oral surgeons and periodontists (OMSPER) also favored CBCT (74%) and regenerative techniques (68%). General consensus highlights the importance of implants, imaging, lenses, and universal precautions; generalists value adhesive materials and bonding, while specialists cite CBCT and tissue engineering. 📌 The study concludes that innovations with direct clinical impact are perceived as the most significant, suggesting that future research should also consider cost-effectiveness and patient perception.</small>|}}vuto un impatto significativo sulla presa di decisione clinica, le scuole di pensiero e i principi fondamentali della disciplina, con l’esplicito obiettivo di migliorare la qualità della vita. Un esempio emblematico è rappresentato dalla visione proposta nella "Scienza dell’Esposizione nel XXI Secolo"{{Tooltip|<sup>[3]</sup>|<ref>{{cita libro
In the last hundred years, technological and methodological innovations {{Tooltip|<sup>[2]</sup>|<ref>{{cita libro|autore=Heft MW|autore2=Fox CH|autore3=Duncan RP|titolo=Assessing the Translation of Research and Innovation into Dental Practice|url=https://www.ncbi.nlm.nih.gov/pubmed/31590599|anno=2019|opera=JDR Clin Trans Res|DOI=10.1177/2380084419879391}}</ref>|<small>🧪 Cross-sectional study analyzing dental innovations over the past 30 years, identifying those that practicing dentists believe have most influenced patient care. 🧬 Thirty experts from the International Association for Dental Research selected the most relevant innovations, which were then surveyed among U.S. dentists who graduated before 1995 and were clinically active for over 50% of the time. 🧩 The most cited innovations were adhesive materials (74.5%), dental implants (71.9%), direct bonding (71.2%), magnifying lenses (54.7%), universal infection control precautions (48.6%), and digital imaging (46.0%), with differences between generalists and specialists: oral surgeons and periodontists (OMSPER) also favored CBCT (74%) and regenerative techniques (68%). The general consensus highlights the importance of implants, imaging, lenses, and universal precautions; generalists value adhesive materials and bonding, while specialists cite CBCT and tissue engineering. 📌 The study concludes that innovations with direct clinical impact are perceived as the most decisive, suggesting that future research should also consider cost-effectiveness and patient perception.</small>|}} have exponentially increased, even in dentistry. These developments have had a significant impact on clinical decision-making, schools of thought, and the fundamental principles of the discipline, with the explicit goal of improving quality of life. A notable example is the vision proposed in "Exposure Science in the 21st Century"{{Tooltip|<sup>[3]</sup>|<ref>{{cita libro
  | titolo = Exposure Science in the 21st Century. A Vision and a Strategy
  | titolo = Exposure Science in the 21st Century. A Vision and a Strategy
  | url = https://www.ncbi.nlm.nih.gov/books/NBK206806/pdf/Bookshelf_NBK206806.pdf
  | url = https://www.ncbi.nlm.nih.gov/books/NBK206806/pdf/Bookshelf_NBK206806.pdf
Riga 55: Riga 50:
  | anno = 2012
  | anno = 2012
  | ISBN = 0-309-26468-5
  | ISBN = 0-309-26468-5
}}</ref>|<small>Il documento Exposure Science in the 21st Century: A Vision and a Strategy (2012) della National Academy of Sciences propone una visione rinnovata della scienza dell’esposizione, con l’obiettivo di affrontare le sfide emergenti per la salute umana e ambientale. 🧠 Cos’è la scienza dell’esposizione? La scienza dell’esposizione studia il contatto tra esseri umani o altri organismi e agenti ambientali (chimici, fisici o biologici), analizzando la durata, l’intensità e gli effetti di tali esposizioni. Questa disciplina è fondamentale per comprendere come gli stressori ambientali influenzino la salute e per sviluppare strategie di prevenzione e mitigazione.🌐 La visione proposta: l’“eco-exposome” Il concetto di “eco-exposome” estende la scienza dell’esposizione dal punto di contatto tra stressore e recettore all’interno dell’organismo e all’ambiente circostante, inclusa l’ecosphera. 🔬 '''Innovazioni tecnologiche e collaborazioni strategiche''': Il documento evidenzia i progressi tecnologici, come sensori ambientali avanzati, metodi analitici, tecnologie molecolari e strumenti computazionali, che offrono nuove opportunità per raccogliere dati più accurati e completi sulle esposizioni.​Accademie Nazionali. 🛠️ Implementazione della visione: Per realizzare questa visione, è necessario: Sviluppare metodi standardizzati e non mirati per raccogliere informazioni sulle esposizioni​Accademie Nazionali. 🎯 Obiettivi a lungo termine: L’obiettivo finale è utilizzare la scienza dell’esposizione per: Valutare e mitigare rapidamente le esposizioni a minacce emergenti. 📌 In sintesi, il documento propone una trasformazione della scienza dell’esposizione, passando da un approccio focalizzato su singoli stressori a una visione integrata e olistica, per affrontare le sfide ambientali e sanitarie del XXI secolo.</small>}}
}}</ref>|<small>The document Exposure Science in the 21st Century: A Vision and a Strategy (2012) by the National Academy of Sciences proposes a renewed vision of exposure science, aiming to address emerging challenges for human and environmental health. 🧠 What is exposure science? Exposure science studies the contact between humans or other organisms and environmental agents (chemical, physical, or biological), analyzing the duration, intensity, and effects of such exposures. This discipline is crucial for understanding how environmental stressors affect health and for developing prevention and mitigation strategies. 🌐 The proposed vision: the “eco-exposome” The concept of “eco-exposome” extends exposure science from the point of contact between stressor and receptor within the organism to the surrounding environment, including the ecosphere. 🔬 '''Technological innovations and strategic collaborations''': The document highlights technological advancements, such as advanced environmental sensors, analytical methods, molecular technologies, and computational tools, which offer new opportunities to collect more accurate and comprehensive data on exposures. 🛠️ Implementing the vision: To realize this vision, it is necessary to: Develop standardized and non-targeted methods to collect information on exposures. 🎯 Long-term goals: The ultimate goal is to use exposure science to: Quickly assess and mitigate exposures to emerging threats. 📌 In summary, the document proposes a transformation of exposure science, moving from an approach focused on individual stressors to an integrated and holistic vision, to address the environmental and health challenges of the 21st century.</small>}}


Tuttavia, questa crescita accelerata non è priva di effetti collaterali concettuali. Alcuni di questi effetti possono risultare ambigui, se non addirittura contrari all’apparente progresso, e generano paradossi clinici e scientifici.{{Tooltip|<sup>[4]</sup>|<ref>{{cita libro
However, this accelerated growth is not without conceptual side effects. Some of these effects may be ambiguous, if not outright contrary to apparent progress, generating clinical and scientific paradoxes.{{Tooltip|<sup>[4]</sup>|<ref>{{cita libro
  | autore = Liu L
  | autore = Liu L
  | autore2 = Li Y
  | autore2 = Li Y
Riga 64: Riga 59:
  | anno = 2014
  | anno = 2014
  | opera = Drugs Today
  | opera = Drugs Today
  | città = Barcellona
  | città = Barcelona
  | DOI = 10.1358/dot.2014.50.1.2076506
  | DOI = 10.1358/dot.2014.50.1.2076506
}}</ref>|<small>Gli anticorpi monoclonali (MAbs) hanno inaugurato una nuova era di terapie mirate, in particolare nei campi dell’immunoterapia e dell’oncologia. I MAbs sono stati sviluppati da anticorpi murini fino ad arrivare ad anticorpi completamente umani, con significativi miglioramenti in termini di immunogenicità e sicurezza. Tuttavia, la sicurezza di questi agenti è oggetto di particolare attenzione, con la segnalazione di effetti collaterali associati al loro utilizzo. Questi effetti collaterali hanno fatto vacillare la fiducia di molti ricercatori nei confronti dei MAbs. 🧠 Questa revisione riassume in modo completo gli effetti collaterali dei MAbs in uso clinico, evidenziando la prevenzione e la gestione delle reazioni avverse. Sebbene molti MAbs siano ben tollerati, e nonostante vengano continuamente sviluppati nuovi MAbs, è difficile garantire che ogni nuova formulazione sia completamente sicura. L’uso clinico dei MAbs dovrà affrontare sfide sempre maggiori in futuro. I medici dovrebbero essere vigili nei confronti degli effetti collaterali potenzialmente letali e trattarli il prima possibile</small>|}}
}}</ref>|<small>Monoclonal antibodies (MAbs) have ushered in a new era of targeted therapies, particularly in the fields of immunotherapy and oncology. MAbs have evolved from murine antibodies to fully human antibodies, with significant improvements in immunogenicity and safety. However, the safety of these agents is of particular concern, with reports of side effects associated with their use. These side effects have shaken the confidence of many researchers in MAbs. 🧠 This review comprehensively summarizes the side effects of MAbs in clinical use, highlighting the prevention and management of adverse reactions. Although many MAbs are well tolerated, and new MAbs are continuously being developed, it is difficult to guarantee that every new formulation is completely safe. The clinical use of MAbs will face increasing challenges in the future. Physicians should be vigilant about potentially lethal side effects and treat them as soon as possible.</small>|}}


Tali ambiguità, invece di indebolire l’intero edificio epistemologico, sono il sintomo di un sistema maturo, capace di riconoscere i propri limiti e di cercare un'evoluzione di paradigma, come descritto da Thomas Kuhn nella sua celebre teoria sullo sviluppo della scienza.
Such ambiguities, instead of weakening the entire epistemological structure, are a symptom of a mature system capable of recognizing its own limits and seeking a paradigm evolution, as described by Thomas Kuhn in his famous theory on the development of science.


====Le fasi di Kuhn in Odontoiatria====
====Kuhn's Phases in Dentistry====


Thomas Kuhn identifica cinque fasi distinte nell’evoluzione di un paradigma scientifico. In Masticationpedia, ci focalizzeremo sulle tre più rilevanti, che meglio si adattano all’evoluzione della scienza riabilitativa masticatoria.
Thomas Kuhn identifies five distinct phases in the evolution of a scientific paradigm. In Masticationpedia, we will focus on the three most relevant ones, which best fit the evolution of masticatory rehabilitation science.


{|
{|
|-
|-
| <blockquote>'''Fase 2''' '''Scienza Normale''':<br>
| <blockquote>'''Phase 2 – Normal Science''':<br>
In questa fase, i ricercatori operano all’interno di un paradigma accettato, cercando di risolvere problemi specifici e affinare il modello dominante. Emergono però le prime "anomalie", cioè fenomeni che non si adattano pienamente alla teoria corrente, generando un primo segnale di instabilità.</blockquote>
In this phase, researchers operate within an accepted paradigm, seeking to solve specific problems and refine the dominant model. However, the first "anomalies" emerge, phenomena that do not fully fit the current theory, generating an initial signal of instability.</blockquote>
|-
|-
| <blockquote>'''Fase 4 – Crisi del Paradigma''':<br>
| <blockquote>'''Phase 4 – Paradigm Crisis''':<br>
Le anomalie aumentano fino a compromettere la fiducia nel paradigma esistente. È il momento di crisi: le vecchie teorie non spiegano più i nuovi dati. In questa fase, Masticationpedia si colloca criticamente, proponendo una revisione dei modelli occlusali tradizionali, aprendo la strada alla fase successiva.</blockquote>
The anomalies increase to the point of undermining confidence in the existing paradigm. It is a moment of crisis: the old theories no longer explain the new data. In this phase, Masticationpedia critically positions itself, proposing a revision of traditional occlusal models, paving the way for the next phase.</blockquote>
|-
|-
| <blockquote>'''Fase 5 – Rivoluzione Scientifica''':<br>
| <blockquote>'''Phase 5 – Scientific Revolution''':<br>
Il paradigma dominante viene abbandonato e ne viene adottato uno nuovo, non necessariamente “più vero”, ma più adatto a spiegare i fenomeni emergenti. In Masticationpedia, questo si traduce in una nuova interpretazione della funzione masticatoria come sistema complesso neurofisiologico e non solo biomeccanico.</blockquote>
The dominant paradigm is abandoned and a new one is adopted, not necessarily "truer," but better suited to explain emerging phenomena. In Masticationpedia, this translates into a new interpretation of masticatory function as a complex neurophysiological system and not just a biomechanical one.</blockquote>
|}
|}


==Epistemologia==
==Epistemology==


<center>
<center>
{|
{|
|-
|-
| align="right" width="250" |<small>''Il cigno nero simboleggia uno dei problemi storici dell'epistemologia: se tutti i cigni che abbiamo visto finora sono bianchi, possiamo decidere che tutti i cigni sono bianchi?''</small>
| align="right" width="250" |<small>''The black swan symbolizes one of the historical problems of epistemology: if all the swans we have seen so far are white, can we decide that all swans are white?''</small>
| align="center" |[[File:Black_Swan_(Cygnus_atratus)_RWD.jpg|175px|center]]
| align="center" |[[File:Black_Swan_(Cygnus_atratus)_RWD.jpg|175px|center]]
|-
|-
| align="center" |[[File:Duck-Rabbit illusion.jpg|203px|center]]
| align="center" |[[File:Duck-Rabbit illusion.jpg|203px|center]]
| width="250" |<small>''Kuhn ha usato illusioni ottiche per dimostrare come un cambiamento di paradigma possa far percepire a una persona le stesse informazioni in modo completamente diverso.''</small>
| width="250" |<small>''Kuhn used optical illusions to demonstrate how a paradigm shift can make a person perceive the same information in a completely different way.''</small>
|}
|}
</center>
</center>


'''Epistemologia''' (dal greco ἐπιστήμη, epistēmē, “conoscenza certa” o “scienza”, e λόγος, logos, “discorso”) è il ramo della filosofia che studia le condizioni necessarie per acquisire conoscenze scientifiche e i metodi attraverso i quali esse vengono raggiunte.{{Tooltip|<sup>[5]</sup>|<ref>Il termine è stato coniato dal filosofo scozzese [[Wpen:James Frederick Ferrier|James Frederick Ferrier]], nel suo ''Institutes of Metaphysic'' (1854);vedi Internet Encyclopedia of Philosophy, ''[https://www.iep.utm.edu/ferrier/ James Frederick Ferrier (1808—1864)]''</ref>|<small>Il termine è stato coniato dal filosofo scozzese [[Wpen:James Frederick Ferrier|James Frederick Ferrier]],, nel suo ''Institutes of Metaphysic'' (1854);vedi Internet Encyclopedia of Philosophy, ''[https://www.iep.utm.edu/ferrier/ James Frederick Ferrier (1808—1864)]</small>|}}
'''Epistemology''' (from the Greek ἐπιστήμη, epistēmē, “certain knowledge” or “science”, and λόγος, logos, “discourse”) is the branch of philosophy that studies the necessary conditions for acquiring scientific knowledge and the methods through which it is achieved.{{Tooltip|<sup>[5]</sup>|<ref>The term was coined by the Scottish philosopher [[Wpen:James Frederick Ferrier|James Frederick Ferrier]], in his ''Institutes of Metaphysic'' (1854); see Internet Encyclopedia of Philosophy, ''[https://www.iep.utm.edu/ferrier/ James Frederick Ferrier (1808—1864)]''</ref>|<small>The term was coined by the Scottish philosopher [[Wpen:James Frederick Ferrier|James Frederick Ferrier]], in his ''Institutes of Metaphysic'' (1854); see Internet Encyclopedia of Philosophy, ''[https://www.iep.utm.edu/ferrier/ James Frederick Ferrier (1808—1864)]</small>|}}


In particolare, l’epistemologia analizza le fondamenta, la validità e i limiti della conoscenza scientifica. Nei paesi anglofoni, il termine "epistemologia" è spesso usato come sinonimo di teoria della conoscenza o gnoseologia.
In particular, epistemology analyzes the foundations, validity, and limits of scientific knowledge. In English-speaking countries, the term "epistemology" is often used as a synonym for the theory of knowledge or gnoseology.


Il problema centrale dell’epistemologia, oggi come al tempo di Hume,{{Tooltip|<sup>[6]</sup>|<ref>[[wikipedia:David_Hume|David Hume]] (1711–1776) è stato un filosofo scozzese.</ref>|<small>📌 David Hume, figlio dell'avvocato Joseph Home di Chirnside e di Katherine Falconer, figlia del presidente del collegio di giustizia, nacque terzogenito in un palazzo sul lato nord del Lawnmarket a Edimburgo. Pur se di origini nobili la sua famiglia non era molto ricca, e a lui venne affidata una porzione esigua del loro patrimonio. Modificò il suo cognome da Home a Hume nel 1734, per mantenere meglio la pronuncia scozzese anche in Inghilterra.</small>}}{{Tooltip|<sup>[7]</sup>|<ref>{{cita libro
The central problem of epistemology, today as in the time of Hume,{{Tooltip|<sup>[6]</sup>|<ref>[[wikipedia:David_Hume|David Hume]] (1711–1776) was a Scottish philosopher.</ref>|<small>📌 David Hume, son of lawyer Joseph Home of Chirnside and Katherine Falconer, daughter of the president of the College of Justice, was born the third child in a mansion on the north side of the Lawnmarket in Edinburgh. Although of noble origins, his family was not very wealthy, and he was entrusted with a small portion of their estate. He changed his surname from Home to Hume in 1734 to better maintain the Scottish pronunciation even in England.</small>}}{{Tooltip|<sup>[7]</sup>|<ref>{{cita libro
| autore = Srivastava S
| autore = Srivastava S
| titolo = Verifiability is a core principle of science
| titolo = Verifiability is a core principle of science
Riga 111: Riga 106:
| editore = Cambridge University Press
| editore = Cambridge University Press
| DOI = 10.1017/S0140525X18000869
| DOI = 10.1017/S0140525X18000869
}}</ref>|<small>📌 La conoscenza scientifica dovrebbe essere verificabile. Le replicazioni favoriscono la verificabilità in diversi modi. Nel modo più diretto, le replicazioni possono confermare affermazioni empiriche. La ricerca di replicazione promuove anche la diffusione delle informazioni necessarie per altri aspetti della verifica; crea conoscenza meta-scientifica su quali risultati considerare credibili anche in assenza di replicazioni; e rafforza una norma più ampia secondo cui gli scienziati devono controllare reciprocamente il proprio lavoro.</small>}} è la questione della verificabilità.
}}</ref>|<small>📌 Scientific knowledge should be verifiable. Replications promote verifiability in several ways. Most directly, replications can confirm empirical claims. Replication research also promotes the dissemination of information necessary for other aspects of verification; creates meta-scientific knowledge about which results to consider credible even in the absence of replications; and reinforces a broader norm that scientists should check each other's work.</small>}} is the issue of verifiability.


Secondo il paradosso di Hempel, ogni esempio che non contraddice una teoria la conferma. Questo è espresso in logica proposizionale come:
According to Hempel's paradox, every example that does not contradict a theory confirms it. This is expressed in propositional logic as:


<math>A \Rightarrow B = \lnot A \lor B</math> {{Tooltip||2=Consideriamo la seguente affermazione: ✅ “Se una persona ha TMD, allora sperimenta dolore orofacciale. ” Possiamo rappresentare questo in logica come <math>A \Rightarrow B = \lnot A \lor B</math>, dove: 🎯<math>A</math> rappresenta  "La persona ha TMD." 🎯 <math>B</math> rappresenta "La persona sperimenta dolore orofacciale." In questo caso, "Se una persona ha TMD, allora sperimenta dolore orofacciale" è equivalente a dire “o la persona non ha TMD (<math>\lnot A</math>), oppure sperimenta dolore orofacciale (<math>B</math>)”. 🧠 La formula è vera nei seguenti casi: Se la persona non ha TMD (<math>\lnot A</math>), l'affermazione è vera, indipendentemente dal dolore orofacciale. Se la persona ha TMD (<math>A</math>) e sperimenta dolore orofacciale (<math>B</math>), l'affermazione è vera. L'affermazione è falsa solo se la persona ha TMD (<math>A</math>) ma non sperimenta dolore orofacciale (<math>\lnot B</math>), contraddicendo la condizione di implicazione.}}
<math>A \Rightarrow B = \lnot A \lor B</math> {{Tooltip||2=Consider the following statement: ✅ “If a person has TMD, then they experience orofacial pain.” We can represent this in logic as <math>A \Rightarrow B = \lnot A \lor B</math>, where: 🎯<math>A</math> represents "The person has TMD." 🎯 <math>B</math> represents "The person experiences orofacial pain." In this case, "If a person has TMD, then they experience orofacial pain" is equivalent to saying “either the person does not have TMD (<math>\lnot A</math>), or they experience orofacial pain (<math>B</math>).” 🧠 The formula is true in the following cases: If the person does not have TMD (<math>\lnot A</math>), the statement is true regardless of orofacial pain. If the person has TMD (<math>A</math>) and experiences orofacial pain (<math>B</math>), the statement is true. The statement is false only if the person has TMD (<math>A</math>) but does not experience orofacial pain (<math>\lnot B</math>), contradicting the implication condition.}}


Ma nessuna teoria può essere definitivamente confermata: un numero infinito di esperimenti futuri potrebbe sempre confutarla.{{Tooltip|<sup>[8]</sup>|<ref>{{cita libro
But no theory can be definitively confirmed: an infinite number of future experiments could always refute it.{{Tooltip|<sup>[8]</sup>|<ref>{{cita libro
| autore = Evans M
| autore = Evans M
| titolo = Measuring statistical evidence using relative belief
| titolo = Measuring statistical evidence using relative belief
Riga 124: Riga 119:
| anno = 2016
| anno = 2016
| DOI = 10.1016/j.csbj.2015.12.001
| DOI = 10.1016/j.csbj.2015.12.001
}}</ref>|<small>📌 Una questione fondamentale nella teoria dell'inferenza statistica riguarda il modo in cui si dovrebbe misurare l’evidenza statistica. Certamente, termini come “evidenza statistica” o semplicemente “evidenza” sono largamente utilizzati nei contesti statistici. Tuttavia, è corretto affermare che una caratterizzazione precisa di questo concetto rimane alquanto sfuggente. Il nostro obiettivo qui è fornire una definizione di come misurare l’evidenza statistica in relazione a un problema statistico specifico. Poiché l’evidenza è ciò che provoca il cambiamento delle credenze, si propone di misurare l’evidenza in base all'entità del cambiamento delle credenze, dal momento a priori al momento a posteriori. 🧠 Di conseguenza, la nostra definizione implica l'esistenza di credenze preesistenti, il che solleva questioni relative alla soggettività e all'oggettività nelle analisi statistiche. Questo aspetto viene affrontato attraverso un principio che richiede la falsificabilità di ogni elemento coinvolto nell’analisi statistica. Queste considerazioni portano alla necessità di verificare eventuali conflitti tra le credenze a priori e i dati osservati, e di misurare il bias a priori presente in una distribuzione iniziale</small>|}}  
}}</ref>|<small>📌 A fundamental issue in the theory of statistical inference concerns how one should measure statistical evidence. Certainly, terms like “statistical evidence” or simply “evidence” are widely used in statistical contexts. However, it is fair to say that a precise characterization of this concept remains somewhat elusive. Our goal here is to provide a definition of how to measure statistical evidence in relation to a specific statistical problem. Since evidence is what causes belief change, it is proposed to measure evidence based on the extent of belief change, from the prior to the posterior moment. 🧠 Consequently, our definition implies the existence of pre-existing beliefs, which raises questions about subjectivity and objectivity in statistical analyses. This aspect is addressed through a principle that requires the falsifiability of every element involved in the statistical analysis. These considerations lead to the need to verify any conflicts between prior beliefs and observed data, and to measure the prior bias present in an initial distribution</small>|}}  


{{qnq|Ma non è tutto così ovvio...}}
{{qnq|But it's not all that obvious...}}


=== '''P-value''' ===
=== '''P-value''' ===
In medicina, ci affidiamo spesso all'inferenza statistica per validare i risultati sperimentali. Uno degli strumenti più noti è il 'P-value', o valore di probabilità, un indicatore usato nei test di significatività.{{Tooltip||2=Il P-value rappresenta la probabilità che i risultati osservati siano dovuti al caso, assumendo vera l'ipotesi nulla <math> H_0 </math>. Non dovrebbe essere usato come criterio binario (ad es., <math> p < 0.05 </math>) per decisioni scientifiche, poiché valori vicini alla soglia richiedono verifiche aggiuntive, come la cross-validation. Lo ''P-hacking'' (ripetere test per ottenere significatività) aumenta i falsi positivi. Disegni sperimentali rigorosi e la trasparenza su tutti i test condotti possono mitigare questo rischio. L’errore di tipo I aumenta con i test multipli: per <math> N </math> test indipendenti a soglia <math> \alpha </math>, il Family-Wise Error Rate (FWER) è <math> FWER = 1 - (1 - \alpha)^N </math>. La correzione di Bonferroni divide la soglia per <math>N</math>, <math>p < \frac{\alpha}{N}</math>, ma può aumentare i falsi negativi. La False Discovery Rate (FDR) di Benjamini-Hochberg permette più scoperte con una proporzione accettabile di falsi positivi. L’approccio bayesiano usa conoscenze precedenti per bilanciare prior e dati con una distribuzione posteriore, offrendo un’alternativa valida al P-value. Per combinare i P-value di più studi, la meta-analisi usa metodi come quello di Fisher: <math> \chi^2 = -2 \sum \ln(p_i) </math>. 🧠 In sintesi, il p-value rimane utile se contestualizzato e integrato con altre misure, come intervalli di confidenza e approcci bayesiani.}}
In medicine, we often rely on statistical inference to validate experimental results. One of the most well-known tools is the 'P-value', or probability value, an indicator used in significance testing.{{Tooltip||2=The P-value represents the probability that the observed results are due to chance, assuming the null hypothesis <math> H_0 </math> is true. It should not be used as a binary criterion (e.g., <math> p < 0.05 </math>) for scientific decisions, as values close to the threshold require additional verification, such as cross-validation. ''P-hacking'' (repeating tests to achieve significance) increases false positives. Rigorous experimental designs and transparency about all tests conducted can mitigate this risk. Type I error increases with multiple tests: for <math> N </math> independent tests at threshold <math> \alpha </math>, the Family-Wise Error Rate (FWER) is <math> FWER = 1 - (1 - \alpha)^N </math>. The Bonferroni correction divides the threshold by <math>N</math>, <math>p < \frac{\alpha}{N}</math>, but can increase false negatives. The Benjamini-Hochberg False Discovery Rate (FDR) allows more discoveries with an acceptable proportion of false positives. The Bayesian approach uses prior knowledge to balance prior and data with a posterior distribution, offering a valid alternative to the P-value. To combine P-values from multiple studies, meta-analysis uses methods like Fisher's: <math> \chi^2 = -2 \sum \ln(p_i) </math>. 🧠 In summary, the P-value remains useful if contextualized and integrated with other measures, such as confidence intervals and Bayesian approaches.}}


Tuttavia, anche il P-value, per anni criterio fondamentale nella medicina basata sulle evidenze, è oggi oggetto di profonda revisione. Nel 2019, una campagna pubblicata su "Nature", firmata da oltre 800 scienziati, ha messo in discussione l’uso rigido della significatività statistica.{{Tooltip|<sup>[9]</sup>|<ref>{{cita libro
However, even the P-value, for years a fundamental criterion in evidence-based medicine, is now undergoing profound revision. In 2019, a campaign published in "Nature", signed by over 800 scientists, questioned the rigid use of statistical significance.{{Tooltip|<sup>[9]</sup>|<ref>{{cita libro
| autore = Amrhein V
| autore = Amrhein V
| autore2 = Greenland S
| autore2 = Greenland S
Riga 140: Riga 135:
| anno = 2019
| anno = 2019
| DOI = 10.1038/d41586-019-00857-9
| DOI = 10.1038/d41586-019-00857-9
}}</ref>|<small>📌 Nell’edizione di marzo di Nature, oltre 800 scienziati hanno sottoscritto un commento in cui si chiede il ritiro del termine “significatività statistica” [1]. Gli argomenti principali degli autori riguardano il fatto che la letteratura scientifica è piena di interpretazioni errate e potenzialmente dannose di associazioni basate su una classificazione arbitraria e binaria, fondata su un valore di p pari a 0,05. Gli autori illustrano le criticità di questo approccio, fornendo esempi concreti in cui ha portato a conclusioni errate all'interno e tra diversi studi. 🧠 Inoltre, analizzando 791 articoli pubblicati in cinque riviste accademiche, hanno rilevato che il 51% di essi ha interpretato erroneamente un risultato statisticamente non significativo come indicazione dell’assenza di un effetto.</small>}} Questa "rivoluzione silenziosa" nel campo dell'inferenza statistica promuove un approccio più riflessivo, contestuale e scientificamente onesto. Tra le voci più autorevoli in questo dibattito troviamo:
}}</ref>|<small>📌 In the March edition of Nature, over 800 scientists signed a commentary calling for the retirement of the term “statistical significance” [1]. The main arguments of the authors concern the fact that the scientific literature is full of erroneous and potentially harmful interpretations of associations based on an arbitrary and binary classification, founded on a p-value of 0.05. The authors illustrate the critical issues of this approach, providing concrete examples where it has led to erroneous conclusions within and between different studies. 🧠 Additionally, analyzing 791 articles published in five academic journals, they found that 51% of them misinterpreted a statistically non-significant result as an indication of the absence of an effect.</small>}} This "silent revolution" in the field of statistical inference promotes a more reflective, contextual, and scientifically honest approach. Among the most authoritative voices in this debate are:


* Rodgers JL – che parla di una “rivoluzione metodologica silenziosa”{{Tooltip|<sup>[10]</sup>|<ref>{{cita libro|autore=Rodgers JL|titolo=The epistemology of mathematical and statistical modeling: a quiet methodological revolution|url=https://www.ncbi.nlm.nih.gov/pubmed/20063905|opera=Am Psychol|anno=2010|DOI=10.1037/a0018326</ref>|<small>📌 Negli ultimi decenni si è verificata, quasi senza discussione, una silenziosa rivoluzione metodologica: una rivoluzione della modellizzazione. Al contrario, il XX secolo si è concluso con vivaci dibattiti sull’utilità del test di significatività dell'ipotesi nulla (NHST). Tuttavia, tale controversia potrebbe essere stata almeno in parte irrilevante, poiché in diversi modi la rivoluzione della modellizzazione ha reso superfluo il dibattito sull’NHST. Inizio presentando una storia dell’NHST e della modellizzazione, e delle relazioni tra i due. Successivamente, definisco e illustro i principi che guidano lo sviluppo e la valutazione dei modelli matematici. Segue una discussione sulla differenza tra l’uso di procedure statistiche in un quadro basato su regole e la costruzione di modelli matematici all'interno di un'epistemologia scientifica. 🧠 Nella formazione post-laurea in psicologia viene trattato con attenzione quasi esclusivamente il primo approccio, basato sulle regole. Vengono quindi descritte le implicazioni pedagogiche di questo squilibrio e la necessità di una didattica rivista per tener conto della rivoluzione della modellizzazione. Infine, si discute di come l'attenzione alla modellizzazione comporti un'evoluzione della pratica statistica in direzioni più progressiste. La base epistemologica della statistica si è spostata: da un insieme di procedure applicate in modo meccanico alla costruzione e valutazione di modelli statistici e scientifici.</small>|}}
* Rodgers JL – who speaks of a “silent methodological revolution”{{Tooltip|<sup>[10]</sup>|<ref>{{cita libro|autore=Rodgers JL|titolo=The epistemology of mathematical and statistical modeling: a quiet methodological revolution|url=https://www.ncbi.nlm.nih.gov/pubmed/20063905|opera=Am Psychol|anno=2010|DOI=10.1037/a0018326}}</ref>|<small>📌 In recent decades, a silent methodological revolution has occurred almost without discussion: a revolution in modeling. In contrast, the 20th century ended with lively debates about the utility of null hypothesis significance testing (NHST). However, this controversy may have been at least partly irrelevant, as the modeling revolution has rendered the NHST debate superfluous in various ways. I begin by presenting a history of NHST and modeling, and the relationships between the two. Next, I define and illustrate the principles guiding the development and evaluation of mathematical models. This is followed by a discussion on the difference between using statistical procedures in a rule-based framework and constructing mathematical models within a scientific epistemology. 🧠 In postgraduate psychology education, almost exclusive attention is given to the first, rule-based approach. The pedagogical implications of this imbalance and the need for revised teaching to account for the modeling revolution are then described. Finally, the discussion turns to how focusing on modeling leads to an evolution of statistical practice in more progressive directions. The epistemological basis of statistics has shifted: from a set of mechanically applied procedures to the construction and evaluation of statistical and scientific models.</small>|}}


* Meehl P – che suggerisce di sostituire i test di significatività con 'intervalli di confidenza' e 'predizioni numeriche verificabili'{{Tooltip|<sup>[11]</sup>|<ref>{{cita libro
* Meehl P – who suggests replacing significance tests with 'confidence intervals' and 'verifiable numerical predictions'{{Tooltip|<sup>[11]</sup>|<ref>{{cita libro
| autore = Meehl P
| autore = Meehl P
| titolo = The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions
| titolo = The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions
| anno = 1997
| anno = 1997}}</ref>|<small>📌 Significance tests have a role in social science research, but their widespread use in theory evaluation is often harmful. The cause of this does not lie in the mathematics itself, but in the poor understanding, by social scientists, of the logical relationship between theory and facts, i.e., a lack of methodological or epistemological clarity.🧭 Theories imply observations, but the reverse is not true. Although a theory's success in deriving a fact tends to corroborate it, this confirmation is weak unless the fact has a very low a priori probability and there are few plausible alternative theories. 🧭 Detecting a non-zero difference or correlation as occurs when rejecting the null hypothesis generally does not have a very low a priori probability, because in social sciences practically everything is correlated with everything else, regardless of the theory. 🎯 In the "strong" use of significance tests, the theory predicts a precise numerical value, or a very narrow range, so the test poses a serious risk of falsification if the theory were objectively incorrect. In general, it is preferable to construct a confidence interval, which provides richer information and still implies the null hypothesis's refutation if a difference falls outside the interval. 🧠 Significance tests are usually more justifiable in technological contexts (e.g., evaluating an intervention) rather than in theory evaluation. It would be useful to have a quantitative index measuring how accurately a theory predicts a risky fact, and an example of such an index is proposed. Unlike current widespread practices, textbooks and statistics courses should clarify and emphasize the significant semantic (logical) gap separating a substantive (causal, compositional) theory from a statistical hypothesis.</small>|}}
</ref>|<small>📌 I test di significatività hanno un ruolo nella ricerca nelle scienze sociali, ma il loro uso diffuso nella valutazione delle teorie è spesso dannoso. La causa di ciò non risiede nella matematica in , bensì nella scarsa comprensione, da parte degli scienziati sociali, della relazione logica tra teoria e fatti, cioè in una mancanza di chiarezza metodologica o epistemologica.🧭 Le teorie implicano osservazioni, ma non vale il contrario. Sebbene il successo di una teoria nel derivare un fatto tenda a corroborarla, questa conferma è debole a meno che il fatto non abbia una probabilità a priori molto bassa e vi siano poche teorie alternative plausibili. 🧭 Il rilevamento di una differenza o correlazione diversa da zero — come avviene respingendo l'ipotesi nulla non ha generalmente una probabilità a priori molto bassa, poiché nelle scienze sociali praticamente tutto è correlato con tutto il resto, indipendentemente dalla teoria. 🎯 Nel "forte" utilizzo dei test di significatività, la teoria predice un valore numerico puntuale, o un intervallo molto ristretto, per cui il test pone la teoria di fronte a un serio rischio di falsificazione se essa fosse oggettivamente scorretta. In generale, è preferibile costruire un intervallo di confidenza, che fornisce informazioni più ricche e implica comunque la confutazione dell'ipotesi nulla se una differenza cade al di fuori dell'intervallo. 🧠 I test di significatività risultano di solito più giustificabili in contesti tecnologici (ad esempio nella valutazione di un intervento) piuttosto che nella valutazione di teorie. Sarebbe utile disporre di un indice quantitativo che misuri quanto accuratamente una teoria riesca a prevedere un fatto rischioso, e viene proposto un esempio di tale indice. Diversamente dalle pratiche attuali più diffuse, i manuali e i corsi di statistica dovrebbero chiarire e sottolineare il grande divario semantico (logico) che separa una teoria sostanziale (causale, composizionale) da un'ipotesi statistica.</small>|}}


* Sprenger & Hartmann – promotori della 'filosofia Bayesiana della scienza'{{Tooltip|<sup>[12]</sup>|<ref>{{cita libro
* Sprenger & Hartmann – proponents of the 'Bayesian philosophy of science'{{Tooltip|<sup>[12]</sup>|<ref>{{cita libro
| autore = Sprenger J
| autore = Sprenger J
| autore2 = Hartmann S
| autore2 = Hartmann S
Riga 156: Riga 150:
| anno = 2019
| anno = 2019
| editore = Oxford University Press
| editore = Oxford University Press
}}</ref>|<small>📌 Come dovremmo ragionare nella scienza? Jan Sprenger e Stephan Hartmann offrono una visione innovativa su temi classici della filosofia della scienza, utilizzando un singolo concetto chiave per spiegare e chiarire numerosi aspetti del ragionamento scientifico. 🧭 Essi propongono che buone argomentazioni e buone inferenze siano caratterizzate dal loro effetto sui nostri gradi razionali di credenza.   🧠 Contrariamente alla visione secondo cui non vi sarebbe spazio per atteggiamenti soggettivi nella "scienza oggettiva", Sprenger e Hartmann spiegano il valore delle prove convincenti attraverso un ciclo di variazioni sul tema della rappresentazione dei gradi razionali di credenza mediante probabilità soggettive (e della loro modifica attraverso la condizionalizzazione bayesiana). In tal modo,integrano l'inferenza bayesiana la principale teoria della razionalità nelle scienze sociali con la pratica scientifica del XXI secolo. Bayesian Philosophy of Science mostra così come modellare tali atteggiamenti migliori la nostra comprensione delle cause, delle spiegazioni, delle prove confermative e dei modelli scientifici in generale. Il loro approccio combina una prospettiva scientificamente orientata e matematicamente raffinata con l'analisi concettuale e una particolare attenzione ai problemi metodologici della scienza moderna, specialmente nell'inferenza statistica, risultando quindi una risorsa preziosa sia per i filosofi che per i pratici della scienza.</small>}}
}}</ref>|<small>📌 How should we reason in science? Jan Sprenger and Stephan Hartmann offer an innovative view on classic themes in the philosophy of science, using a single key concept to explain and clarify numerous aspects of scientific reasoning. 🧭 They propose that good arguments and good inferences are characterized by their effect on our rational degrees of belief. 🧠 Contrary to the view that there is no room for subjective attitudes in "objective science," Sprenger and Hartmann explain the value of compelling evidence through a cycle of variations on the theme of representing rational degrees of belief through subjective probabilities (and their modification through Bayesian conditioning). In this way, they integrate Bayesian inference the main theory of rationality in the social sciences with the scientific practice of the 21st century. Bayesian Philosophy of Science thus shows how modeling such attitudes improves our understanding of causes, explanations, confirmatory evidence, and scientific models in general. Their approach combines a scientifically oriented and mathematically refined perspective with conceptual analysis and a particular focus on the methodological problems of modern science, especially in statistical inference, making it a valuable resource for both philosophers and practitioners of science.</small>}}


La 'American Statistical Association' ha sostenuto questo cambiamento pubblicando un numero speciale della rivista 'The American Statistician', intitolato “Statistical Inference in the 21st Century: A World Beyond p < 0.05”.{{Tooltip|<sup>[13]</sup>|<ref name="wasser">{{cita libro
The 'American Statistical Association' has supported this change by publishing a special issue of the journal 'The American Statistician', titled “Statistical Inference in the 21st Century: A World Beyond p < 0.05”.{{Tooltip|<sup>[13]</sup>|<ref name="wasser">{{cita libro
| autore = Wasserstein RL
| autore = Wasserstein RL
| autore2 = Schirm AL
| autore2 = Schirm AL
Riga 167: Riga 161:
| anno = 2019
| anno = 2019
| DOI = 10.1080/00031305.2019.1583913
| DOI = 10.1080/00031305.2019.1583913
}}</ref>|<small>🧠 Alcuni di voi, esplorando questo numero speciale di The American Statistician, potrebbero chiedersi se si tratti di una ramanzina da parte di statistici pedanti intenti a farvi la morale su cosa non fare con i p-value, senza però offrire reali soluzioni al difficile problema di separare il segnale dal rumore nei dati e prendere decisioni in condizioni di incertezza. Non temete.In questo numero, grazie a 43 articoli innovativi e stimolanti scritti da statistici lungimiranti, arriva l’aiuto di cui abbiamo bisogno.</small>|}} Il volume propone nuove modalità di rappresentazione dell’incertezza e invita a superare la dipendenza dal P-value come unica metrica della verità scientifica.
}}</ref>|<small>🧠 Some of you, exploring this special issue of The American Statistician, might wonder if it is a lecture from pedantic statisticians intent on moralizing about what not to do with p-values, without offering real solutions to the difficult problem of separating signal from noise in data and making decisions under uncertainty. Fear not. In this issue, thanks to 43 innovative and stimulating articles written by forward-thinking statisticians, the help we need arrives.</small>|}} The volume proposes new ways of representing uncertainty and invites us to move beyond the dependence on the P-value as the sole metric of scientific truth.


==Interdisciplinarità==
==Interdisciplinarity==
Una visione superficiale potrebbe suggerire un conflitto tra la rigidità disciplinare del ''<nowiki/>'Paradigma Fisico della Scienza''<nowiki/>' {{Tooltip||2=Il "Paradigma Fisico della Scienza" descrive un approccio epistemologico prevalente nelle scienze fisiche, incentrato su modelli deterministici e metodologie sperimentali rigorose. Questo paradigma si basa su osservazioni empiriche e sul metodo scientifico per cercare leggi universali che governano i fenomeni naturali.''' Caratteristiche chiave'''1. Determinismo: Assume che i fenomeni naturali seguano leggi fisse, permettendo previsioni accurate basate su condizioni iniziali. 2. ''Misurabilità e riproducibilità'': Sottolinea misurazioni quantitative ed esperimenti riproducibili per confermare risultati in diversi contesti. 3. ''Isolamento delle variabili'': Si concentra sull'analisi di effetti specifici isolando le variabili, spesso idealizzando sistemi in condizioni controllate. Sebbene efficace nelle scienze naturali classiche, il paradigma fisico ha limitazioni in campi complessi come la neurofisiologia, dove le interazioni dinamiche e la variabilità sfidano i modelli deterministici. '''Applicazione nella Neurofisiologia Masticatoria''': Nella neurofisiologia masticatoria, il paradigma fisico aiuta a sviluppare modelli di base, ma non riesce a spiegare i comportamenti emergenti, come il reclutamento delle unità motorie in risposta a stimoli complessi. '''Verso un Paradigma Integrato''': Emergente è un "Paradigma Ingegneristico della Scienza", che offre un approccio più adattivo che considera la complessità, permettendo modelli predittivi più flessibili che tengono conto delle interazioni non lineari nei sistemi biologici}} e l’apertura sistemica del Paradigma Ingegneristico della Scienza {{Tooltip||2=Il '''Paradigma Ingegneristico della Scienza''' enfatizza le applicazioni pratiche, la collaborazione interdisciplinare e la comprensione dei sistemi complessi. Contrasta con i modelli deterministici tradizionali, concentrandosi invece sulla risoluzione di problemi del mondo reale, particolarmente in campi come biologia, medicina e scienze sociali.''' Caratteristiche chiave''' ''Orientamento alla Risoluzione dei Problemi'': Prioritizza soluzioni a questioni complesse rispetto a modelli puramente teorici. ''Collaborazione Interdisciplinare'': Incoraggia l'integrazione della conoscenza proveniente da varie discipline, migliorando la comprensione attraverso esperienze condivise. ''Focus sui Sistemi Complessi'': Riconosce il comportamento emergente e l'interconnettività dei componenti del sistema, riconoscendo che i risultati possono essere imprevedibili e non lineari. ''Processo Iterativo'': Abbraccia un approccio adattivo, affinando i modelli in base ai dati empirici e al feedback per migliorare la reattività.'''Integrazione Tecnologica''': Applica principi ingegneristici per migliorare la progettazione della ricerca e l'analisi dei dati, utilizzando simulazioni e modellazione computazionale. '''Applicazione nella Neurofisiologia Masticatoria''' Nella neurofisiologia masticatoria, questo paradigma promuove strumenti diagnostici e approcci terapeutici innovativi. Integrando neurofisiologia, biomeccanica e scienza dei materiali, fornisce una visione completa della funzione e disfunzione della mandibola. Il Paradigma Ingegneristico della Scienza promuove collaborazione e innovazione, portando infine a progressi che migliorano la nostra comprensione dei sistemi complessi e migliorano i risultati pratici in vari campi.}}
A superficial view might suggest a conflict between the disciplinary rigidity of the ''<nowiki/>'Physical Paradigm of Science''<nowiki/>' {{Tooltip||2=The "Physical Paradigm of Science" describes a prevailing epistemological approach in the physical sciences, centered on deterministic models and rigorous experimental methodologies. This paradigm relies on empirical observations and the scientific method to seek universal laws governing natural phenomena.'''Key Characteristics'''1. Determinism: Assumes that natural phenomena follow fixed laws, allowing accurate predictions based on initial conditions. 2. ''Measurability and Reproducibility'': Emphasizes quantitative measurements and reproducible experiments to confirm results in different contexts. 3. ''Isolation of Variables'': Focuses on analyzing specific effects by isolating variables, often idealizing systems under controlled conditions. While effective in classical natural sciences, the physical paradigm has limitations in complex fields like neurophysiology, where dynamic interactions and variability challenge deterministic models. '''Application in Masticatory Neurophysiology''': In masticatory neurophysiology, the physical paradigm helps develop basic models but fails to explain emergent behaviors, such as motor unit recruitment in response to complex stimuli. '''Towards an Integrated Paradigm''': Emerging is an "Engineering Paradigm of Science," offering a more adaptive approach that considers complexity, allowing more flexible predictive models that account for non-linear interactions in biological systems}} and the systemic openness of the Engineering Paradigm of Science {{Tooltip||2=The '''Engineering Paradigm of Science''' emphasizes practical applications, interdisciplinary collaboration, and understanding complex systems. It contrasts with traditional deterministic models, focusing instead on solving real-world problems, particularly in fields like biology, medicine, and social sciences.'''Key Characteristics''' ''Problem-Solving Orientation'': Prioritizes solutions to complex issues over purely theoretical models. ''Interdisciplinary Collaboration'': Encourages integrating knowledge from various disciplines, enhancing understanding through shared experiences. ''Focus on Complex Systems'': Recognizes emergent behavior and the interconnectedness of system components, acknowledging that outcomes can be unpredictable and non-linear. ''Iterative Process'': Embraces an adaptive approach, refining models based on empirical data and feedback to improve responsiveness.'''Technological Integration''': Applies engineering principles to enhance research design and data analysis, utilizing simulations and computational modeling. '''Application in Masticatory Neurophysiology''' In masticatory neurophysiology, this paradigm promotes innovative diagnostic tools and therapeutic approaches. By integrating neurophysiology, biomechanics, and materials science, it provides a comprehensive view of jaw function and dysfunction. The Engineering Paradigm of Science fosters collaboration and innovation, ultimately leading to advances that improve our understanding of complex systems and enhance practical outcomes in various fields.}}


📘 Secondo un importante studio europeo,{{Tooltip|<sup>[14]</sup>|<ref>{{cita libro
📘 According to an important European study,{{Tooltip|<sup>[14]</sup>|<ref>{{cita libro
| autore = Boon M
| autore = Boon M
| autore2 = Van Baalen S
| autore2 = Van Baalen S
Riga 180: Riga 174:
| anno = 2019
| anno = 2019
| DOI = 10.1007/s13194-018-0242-4
| DOI = 10.1007/s13194-018-0242-4
}}</ref>|<small> 📌 Nelle politiche scientifiche è generalmente riconosciuto che la risoluzione di problemi basata sulla scienza richiede la ricerca interdisciplinare. 📌 Tuttavia, i processi epistemologici che conducono a una ricerca interdisciplinare efficace sono ancora poco compresi. 🧭 Questo articolo si propone di delineare un'epistemologia della ricerca interdisciplinare (IDR), in particolare per la risoluzione di problemi del "mondo reale". L’attenzione si concentra sulla questione del perché i ricercatori incontrino difficoltà cognitive ed epistemiche nel condurre attività interdisciplinari. Sulla base di uno studio della letteratura educativa, si conclude che l'istruzione superiore è carente di idee chiare sull'epistemologia della ricerca interdisciplinare e, di conseguenza, su come insegnarla. Si ipotizza che la scarsa attenzione filosofica verso l'epistemologia dell'IDR sia dovuta alla predominanza di un paradigma filosofico della scienza, definito "paradigma fisico della scienza", che ostacola il riconoscimento delle profonde sfide epistemologiche dell’interdisciplinarità sia nella filosofia della scienza sia nell'educazione e nella ricerca scientifica.🧠 Viene quindi proposto un paradigma filosofico alternativo, definito "paradigma ingegneristico della scienza", che comporta presupposti diversi riguardo ad aspetti come lo scopo della scienza, il carattere della conoscenza, i criteri epistemici e pragmatici per accettare la conoscenza, e il ruolo degli strumenti tecnologici. Secondo questo paradigma ingegneristico, la produzione di conoscenza per fini epistemici diventa lo scopo della scienza, e la "conoscenza" (teorie, modelli, leggi, concetti) viene interpretata come uno strumento epistemico utile per svolgere compiti conoscitivi da parte di agenti epistemici, anziché come una rappresentazione oggettiva di aspetti del mondo indipendente dalle modalità della sua costruzione. Questo implica che la conoscenza sia inevitabilmente plasmata dal modo in cui viene costruita. Inoltre, il modo in cui le diverse discipline scientifiche costruiscono la conoscenza è guidato dalle specificità della disciplina stessa, analizzabili attraverso le prospettive disciplinari. 🧠 Ne consegue che la conoscenza e i suoi usi epistemici non possono essere compresi senza almeno una certa comprensione di come essa venga costruita. Di conseguenza, i ricercatori scientifici necessitano di cosiddetti "scaffolding metacognitivi" che li assistano nell'analisi e nella ricostruzione dei processi di costruzione della conoscenza e delle differenze tra le discipline. Nel paradigma ingegneristico, questi scaffolding metacognitivi vengono interpretati anch'essi come strumenti epistemici, ma in questo caso strumenti che guidano, abilitano e limitano l'analisi e l'articolazione dei processi di produzione della conoscenza (cioè spiegano gli aspetti epistemologici del fare ricerca). Nella ricerca interdisciplinare, tali scaffolding metacognitivi assistono la comunicazione interdisciplinare, con l'obiettivo di analizzare e articolare il modo in cui ciascuna disciplina costruisce la propria conoscenza.</small>|}}
}}</ref>|<small> 📌 In scientific policies, it is generally recognized that problem-solving based on science requires interdisciplinary research. 📌 However, the epistemological processes leading to effective interdisciplinary research are still poorly understood. 🧭 This article aims to outline an epistemology of interdisciplinary research (IDR), particularly for solving "real-world" problems. The focus is on why researchers encounter cognitive and epistemic difficulties in conducting interdisciplinary activities. Based on a study of educational literature, it is concluded that higher education lacks clear ideas about the epistemology of interdisciplinary research and, consequently, how to teach it. It is hypothesized that the lack of philosophical attention to the epistemology of IDR is due to the predominance of a philosophical paradigm of science, defined as the "physical paradigm of science," which hinders the recognition of the deep epistemological challenges of interdisciplinarity both in the philosophy of science and in scientific education and research.🧠 An alternative philosophical paradigm, defined as the "engineering paradigm of science," is therefore proposed, which involves different assumptions regarding aspects such as the purpose of science, the nature of knowledge, the epistemic and pragmatic criteria for accepting knowledge, and the role of technological tools. According to this engineering paradigm, the production of knowledge for epistemic purposes becomes the goal of science, and "knowledge" (theories, models, laws, concepts) is interpreted as an epistemic tool useful for performing cognitive tasks by epistemic agents, rather than as an objective representation of aspects of the world independent of the way it is constructed. This implies that knowledge is inevitably shaped by the way it is constructed. Moreover, the way different scientific disciplines construct knowledge is guided by the specificities of the discipline itself, analyzable through disciplinary perspectives. 🧠 It follows that knowledge and its epistemic uses cannot be understood without at least some understanding of how it is constructed. Consequently, scientific researchers need so-called "metacognitive scaffolding" to assist them in analyzing and reconstructing the processes of knowledge construction and the differences between disciplines. In the engineering paradigm, these metacognitive scaffolding are also interpreted as epistemic tools, but in this case, tools that guide, enable, and limit the analysis and articulation of knowledge production processes (i.e., explain the epistemological aspects of doing research). In interdisciplinary research, such metacognitive scaffolding assist interdisciplinary communication, with the aim of analyzing and articulating how each discipline constructs its own knowledge.</small>|}}


* l’interdisciplinarità richiede:
* interdisciplinarity requires:


* strumenti metacognitivi ("scaffolds cognitivi")
* metacognitive tools ("cognitive scaffolds")
* linguaggi comuni tra discipline diverse
* common languages between different disciplines
* modelli epistemologici flessibili
* flexible epistemological models


Un altro studio propone un’interpretazione ingegneristica della conoscenza{{Tooltip|<sup>[15]</sup>|<ref>{{cita libro
Another study proposes an engineering interpretation of knowledge{{Tooltip|<sup>[15]</sup>|<ref>{{cita libro
| autore = Boon M
| autore = Boon M
| titolo = An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool
| titolo = An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool
Riga 195: Riga 189:
| anno = 2017
| anno = 2017
| DOI = 10.1016/j.pbiomolbio.2017.04.001
| DOI = 10.1016/j.pbiomolbio.2017.04.001
}}</ref>|<small>📌 Per affrontare la complessità dei sistemi biologici e tentare di generare risultati applicabili, le scienze biomediche attuali stanno adottando concetti e metodi provenienti dalle scienze ingegneristiche. I filosofi della scienza hanno interpretato questo fenomeno come l’emergere di un paradigma ingegneristico, in particolare nella biologia dei sistemi e nella biologia sintetica. Questo articolo si propone di articolare il presunto paradigma ingegneristico in contrasto con il paradigma fisico che ha sostenuto l’ascesa della biochimica e della biologia molecolare. Tale articolazione prende le mosse dalla nozione di "matrice disciplinare" di Kuhn, che indica ciò che costituisce un paradigma. Si sostiene che il nucleo del paradigma fisico risieda nelle sue presupposizioni metafisiche e ontologiche, mentre il nucleo del paradigma ingegneristico consista nell’obiettivo epistemico di produrre conoscenza utile per risolvere problemi esterni alla pratica scientifica. 🧠 Pertanto, i due paradigmi implicano nozioni distinte di conoscenza. Mentre il paradigma fisico comporta una nozione rappresentazionale della conoscenza, il paradigma ingegneristico implica la nozione di "conoscenza come strumento epistemico"</small>.}} nei contesti biomedici: qui la conoscenza è considerata 'uno strumento attivo' per la risoluzione di problemi clinici complessi, più che una semplice rappresentazione teorica della realtà.
}}</ref>|<small>📌 To address the complexity of biological systems and attempt to generate applicable results, current biomedical sciences are adopting concepts and methods from engineering sciences. Philosophers of science have interpreted this phenomenon as the emergence of an engineering paradigm, particularly in systems biology and synthetic biology. This article aims to articulate the presumed engineering paradigm in contrast to the physical paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of "disciplinary matrix," which indicates what constitutes a paradigm. It is argued that the core of the physical paradigm lies in its metaphysical and ontological assumptions, while the core of the engineering paradigm consists of the epistemic goal of producing knowledge useful for solving problems external to scientific practice. 🧠 Therefore, the two paradigms imply distinct notions of knowledge. While the physical paradigm involves a representational notion of knowledge, the engineering paradigm implies the notion of "knowledge as an epistemic tool"</small>.}} in biomedical contexts: here, knowledge is considered 'an active tool' for solving complex clinical problems, rather than a mere theoretical representation of reality.


==🌐 Verso l’Innovazione Paradigmatica==
==🌐 Towards Paradigmatic Innovation==
L’intersezione tra questi due paradigmi non solo arricchisce il metodo scientifico, ma produce 'Innovazioni Paradigmatiche', cioè veri salti epistemologici.
The intersection of these two paradigms not only enriches the scientific method but produces 'Paradigmatic Innovations', which are true epistemological leaps.


🧬Come nota Yegane Guven ( 2017) {{Tooltip|<sup>[16]</sup>|<ref>{{cita libro
🧬As noted by Yegane Guven (2017) {{Tooltip|<sup>[16]</sup>|<ref>{{cita libro
| autore = Guven Y
| autore = Guven Y
| titolo = Scientific basis of dentistry
| titolo = Scientific basis of dentistry
Riga 207: Riga 201:
| anno = 2017
| anno = 2017
| DOI = 10.17096/jiufd.04646
| DOI = 10.17096/jiufd.04646
}}</ref>|<small>📌 Negli ultimi anni, l’odontoiatria ha conosciuto un’esplosione di innovazioni scientifiche e tecnologiche che stanno trasformando profondamente sia la pratica clinica che l’educazione universitaria; realtà virtuale, nanotecnologia, ingegneria tissutale, medicina personalizzata e cellule staminali aprono nuove frontiere per diagnosi e trattamenti, mentre l’educazione integra bioscienze, bioinformatica e ICT, puntando su ricerca, problem-solving e approccio esperienziale; tra le innovazioni più promettenti: biomimetica, test salivari, rigenerazione tissutale e terapie genetiche, con l’obiettivo di spostare l’odontoiatria verso un modello rigenerativo e predittivo; accreditamento e aggiornamento dei curricula restano fondamentali per una formazione al passo coi tempi</small>}} nella sua rassegna sulla medicina e odontoiatria digitali. l’innovazione nasce spesso da:
}}</ref>|<small>📌 In recent years, dentistry has experienced an explosion of scientific and technological innovations that are profoundly transforming both clinical practice and university education; virtual reality, nanotechnology, tissue engineering, personalized medicine, and stem cells are opening new frontiers for diagnosis and treatments, while education integrates biosciences, bioinformatics, and ICT, focusing on research, problem-solving, and experiential approaches; among the most promising innovations: biomimetics, salivary tests, tissue regeneration, and genetic therapies, with the goal of shifting dentistry towards a regenerative and predictive model; accreditation and updating of curricula remain fundamental for training that keeps pace with the times</small>}} in her review on digital medicine and dentistry. Innovation often arises from:
* rivoluzioni biologiche e digitali
* biological and digital revolutions
* contaminazioni disciplinari
* interdisciplinary contaminations
* visione sistemica anziché riduzionista
* systemic rather than reductionist vision


Questi cambiamenti non sono incrementali, ma 'paradigmatici', nel senso che modificano l’intero modo in cui pensiamo, osserviamo e trattiamo i sistemi clinici, tanto quanto la funzione masticatoria.
These changes are not incremental but 'paradigmatic', in the sense that they alter the entire way we think, observe, and treat clinical systems, as much as the masticatory function.


{{q2|L'interdisciplinarità non è un lusso teorico, ma una necessità pratica nella medicina dei sistemi complessi.}}
{{q2|Interdisciplinarity is not a theoretical luxury but a practical necessity in the medicine of complex systems.}}


==Dental Malocclusion==
"Malocclusion" derives from the Latin 'malum' (bad) and 'occludere' (to close), literally meaning "incorrect closure" of the teeth.{{Tooltip|<sup>[17]</sup>|<ref>https://it.wikipedia.org/wiki/Edward_Angle</ref>|<small> 📌 Considered the father of modern orthodontics, Angle defined the first classification system for malocclusions (Class I, Class II, etc.), which is still used today to describe the alignment and relationship of teeth; he simplified the design of orthodontic appliances, founded the first school of orthodontics, the American Association of Orthodontists (later AAO), and the first orthodontic journal, and authored the fundamental work "Treatment of Malocclusion of the Teeth" (1887).</small>}} Although intuitive, the term “malocclusion” implies a value judgment (“bad”) that is not always supported by functional clinical evidence.


==Malocclusione Dentale==
🧪 A PubMed search for the word "malocclusion" yields over 33,000 articles.{{Tooltip|<sup>[18]</sup>|<ref>Pubmed, ''[https://www.ncbi.nlm.nih.gov/pubmed/?term=%22malocclusion%22 Malocclusion]''</ref>|<small>https://pubmed.ncbi.nlm.nih.gov/?term&#61;%22malocclusion%22</small>}} However, searching for “interdisciplinary diagnosis of malocclusion” reduces the results to 245 articles.{{Tooltip|<sup>[19]</sup>|<ref>Pubmed, ''[https://www.ncbi.nlm.nih.gov/pubmed/?term=interdisciplinary+diagnostics+of+malocclusions Interdisciplinary diagnosis of malocclusions]''</ref>|3=<small>https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions</small>}} If 'Differential Diagnosis' is added to this request, the result drops to only 5 articles.{{Tooltip|<sup>[20]</sup>|<ref>https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions+AND+differential+diagnosis</ref>|<small>https://pubmed.ncbi.nlm.nih.gov/?term&#61;interdisciplinary+diagnostics+of+malocclusions+AND+differential+diagnosis</small>}}
"Malocclusione" deriva dal latino 'malum'(male) e 'occludere' (chiudere), letteralmente "chiusura sbagliata" dei denti.{{Tooltip|<sup>[17]</sup>|<ref>https://it.wikipedia.org/wiki/Edward_Angle</ref>|<small> 📌 Considerato il padre della moderna ortodonzia, Angle definì il primo sistema di classificazione delle malocclusioni (I Classe, II Classe, ecc.), ancora oggi in uso per descrivere l'allineamento e la relazione dei denti; semplificò la progettazione di apparecchi ortodontici, fondò la prima scuola di ortodonzia, l'Associazione Americana di Ortodonzia (poi AAO) e la prima rivista ortodontica, ed è autore dell'opera fondamentale "Treatment of Malocclusion of the Teeth" (1887).</small>}} Sebbene intuitivo, il termine “malocclusione” implica un giudizio di valore (“male”) che non è sempre supportato da prove cliniche funzionali.


🧪 Una ricerca su PubMed per la parola "malocclusion" produce oltre 33.000 articoli.{{Tooltip|<sup>[18]</sup>|<ref>Pubmed, ''[https://www.ncbi.nlm.nih.gov/pubmed/?term=%22malocclusion%22 Malocclusion]''</ref>|<small>https://pubmed.ncbi.nlm.nih.gov/?term&#61;%22malocclusion%22</small>}} Tuttavia, cercando “diagnosi interdisciplinare della malocclusione”, i risultati crollano a 245 articoli {{Tooltip|<sup>[19]</sup>|<ref>Pubmed, ''[https://www.ncbi.nlm.nih.gov/pubmed/?term=interdisciplinary+diagnostics+of+malocclusions Diagnosi interdisciplinare delle malocclusioni]''</ref>|3=<small>https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions</small>}} mentre se a questa richiesta si aggiunge 'Diagnosi Differenziale il risultato precipita a soli 5  soli quattro articoli.{{Tooltip|<sup>[20]</sup>|<ref>https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions+AND+differential+diagnosis</ref>|<small>https://pubmed.ncbi.nlm.nih.gov/?term&#61;interdisciplinary+diagnostics+of+malocclusions+AND+differential+diagnosis</small>}}
{{qnq|These data suggest that the concept of "malocclusion" has been overused without adequate functional investigation.}}


{{qnq|Questi dati suggeriscono che il concetto di "malocclusione" è stato sovrautilizzato senza adeguato approfondimento funzionale.}}
📌 A study by Smaglyuk et al. emphasizes the need for an interdisciplinary diagnostic approach, especially in children.{{Tooltip|<sup>[21]</sup>|<ref>{{cita libro
 
📌 Uno studio di Smaglyuk et al. sottolinea la necessità di un approccio diagnostico interdisciplinare, specialmente nei bambini{{Tooltip|<sup>[21]</sup>|<ref>{{cita libro
| autore = Smaglyuk LV
| autore = Smaglyuk LV
| autore2 = Voronkova HV
| autore2 = Voronkova HV
Riga 234: Riga 227:
| opera = Wiad Lek
| opera = Wiad Lek
| anno = 2019
| anno = 2019
}}</ref>|<small>📌 Introduzione: Il compito principale dell'ortodonzia moderna è creare un'occlusione equilibrata e morfologicamente stabile, in armonia con l’estetica facciale e l’adattamento funzionale. 🧭 Lo scopo dello studio è indagare la relazione tra anomalie dento-facciali e patologie somatiche.Pazienti e metodi: Materiali e metodi: È stato condotto uno studio bibliografico utilizzando i database Medline e Google Scholar. 🧭 Revisione: Il corpo umano è un sistema biologico costituito da elementi interconnessi e subordinati. Qualsiasi anomalia nel funzionamento di questo sistema può provocare un'alterazione funzionale in un singolo organo. Questo principio si applica pienamente alle anomalie e deformazioni dento-facciali, il cui sviluppo è strettamente correlato ad altre patologie. 🧠 La diagnostica, la strategia terapeutica e la prevenzione delle anomalie e deformazioni dento-facciali dovrebbero essere considerate nel contesto dell'integrità dell'organismo non ancora formato del bambino, riconoscendo l'interdipendenza tra la forma e le funzioni dei suoi organi e sistemi.</small>}}
}}</ref>|<small>📌 Introduction: The main task of modern orthodontics is to create a balanced and morphologically stable occlusion, in harmony with facial aesthetics and functional adaptation. 🧭 The purpose of the study is to investigate the relationship between dento-facial anomalies and somatic pathologies. Patients and methods: Materials and methods: A bibliographic study was conducted using the Medline and Google Scholar databases. 🧭 Review: The human body is a biological system consisting of interconnected and subordinate elements. Any anomaly in the functioning of this system can cause a functional alteration in a single organ. This principle fully applies to dento-facial anomalies and deformities, whose development is closely related to other pathologies. 🧠 The diagnosis, therapeutic strategy, and prevention of dento-facial anomalies and deformities should be considered in the context of the integrity of the not yet fully formed child's body, recognizing the interdependence between the form and functions of its organs and systems.</small>}}
 
{{q2|La diagnosi, le strategie terapeutiche e la prevenzione delle anomalie dento-facciali devono considerare l'organismo nel suo insieme, specialmente nei bambini in fase di sviluppo.}}


{{q2|The diagnosis, therapeutic strategies, and prevention of dento-facial anomalies must consider the organism as a whole, especially in developing children.}}


==📊 Verso i “Dismorfismi Occlusali”==
==📊 Towards "Occlusal Dysmorphisms"==
📎 In Masticationpedia si preferisce parlare di "Dismorfismi occlusali”, poiché:
📎 In Masticationpedia, the term "Occlusal Dysmorphisms" is preferred because:


- non tutte le occlusioni non simmetriche sono patologiche
- not all asymmetrical occlusions are pathological


- la funzione masticatoria può essere conservata anche in presenza di asimmetrie
- masticatory function can be preserved even in the presence of asymmetries


- esistono adattamenti neuromuscolari che compensano le discrepanze
- there are neuromuscular adaptations that compensate for discrepancies


👉 Questo porta a una riflessione: 'è corretto trattare tutte le malocclusioni?' Non sempre.
👉 This leads to a reflection: 'is it correct to treat all malocclusions?' Not always.


===Caso Clinico===
===Clinical Case===
Nel caso seguente, il paziente presenta:
In the following case, the patient presents:
* morso incrociato posteriore unilaterale
* unilateral posterior crossbite
* morso aperto anteriore
* anterior open bite


Sarebbe candidato a:
The patient would be a candidate for:
* trattamento ortodontico
* orthodontic treatment
* chirurgia ortognatica
* orthognathic surgery


Tuttavia, il paziente 'rifiuta la terapia' riferendo una funzione masticatoria normale. Il dentista spiega i rischi di lungo termine, ma rispetta la decisione.
However, the patient 'refuses therapy' citing normal masticatory function. The dentist explains the long-term risks but respects the decision.


{{qnq|Cosa ci dice questo caso?}}
{{qnq|What does this case tell us?}}


📌 Che la funzione può prevalere sulla forma. Per comprenderlo, sono stati eseguiti test elettrofisiologici:
📌 That function can prevail over form. To understand this, electrophysiological tests were performed:


<gallery mode="slideshow">
<gallery mode="slideshow">
File:Occlusal Centric view in open and cross bite patient.jpg|'''Figura 1a:''' Vista occlusale centrica di un paziente con morso incrociato e aperto.
File:Occlusal Centric view in open and cross bite patient.jpg|'''Figure 1a:''' Centric occlusal view of a patient with crossbite and open bite.
File:Bilateral Electric Transcranial Stimulation.jpg|'''Figura 1b:''' Stimolazione transcranica bilaterale: simmetria dei masseteri.
File:Bilateral Electric Transcranial Stimulation.jpg|'''Figure 1b:''' Bilateral transcranial stimulation: symmetry of the masseters.
File:Jaw Jerk .jpg|'''Figura 1c:''' Riflesso della mandibola: simmetria funzionale confermata.
File:Jaw Jerk .jpg|'''Figure 1c:''' Jaw jerk reflex: confirmed functional symmetry.
File:Mechanic Silent Period.jpg|'''Figura 1d:''' Periodo silente meccanico: attivazione bilaterale equilibrata.
File:Mechanic Silent Period.jpg|'''Figure 1d:''' Mechanical silent period: balanced bilateral activation.
</gallery>
</gallery>


🎯 I risultati mostrano una simmetria organico-funzionale 'nonostante la malocclusione visiva', suggerendo che la funzione neuromuscolare può compensare le discrepanze morfologiche.
🎯 The results show organic-functional symmetry 'despite the visual malocclusion', suggesting that neuromuscular function can compensate for morphological discrepancies.
 
<blockquote>''Dismorfismi Occlusali e non Malocclusione... che, come vedremo a breve, è un argomento completamente diverso.''</blockquote>
 
==Discussione==
La considerazione del sistema masticatorio come un sistema complesso si avvalora ulteriormente alla luce dei recenti sviluppi in neurofisiologia applicata all’occlusione dentale. Studi condotti su modelli animali, in particolare nei ratti Sprague-Dawley, hanno dimostrato che anche minime modifiche occlusali (es. troncatura dell’incisivo mandibolare) sono in grado di indurre cambiamenti significativi nella corteccia motoria primaria del volto (face-M1), con manifestazioni evidenti di neuroplasticità funzionale e strutturale{{Tooltip|<sup>[22]</sup>|<ref>Avivi-Arber L, Lee JC, Sessle BJ. Motor cortex neuroplasticity associated with dental occlusion. J Dent Res. 2015;94(12):1751–9. doi:10.1177/0022034515596345</ref>|<small>. 🧠 La modifica dell’occlusione dentale può influenzare le funzioni orali sensori-motorie, e non tutti i pazienti riescono ad adattarsi ai trattamenti restaurativi. Studiando ratti Sprague-Dawley, è stata osservata la neuroplasticità della corteccia motoria primaria facciale (face-M1) in risposta a ritagli ripetuti degli incisivi mandibolari, seguiti dal ripristino dei contatti occlusali. I cambiamenti, mappati con microstimolazione intracorticale (ICMS), hanno mostrato differenze significative tra gli emisferi cerebrali nella latenza e distribuzione delle aree motorie della lingua e della mandibola. Questi risultati suggeriscono che la neuroplasticità della face-M1 potrebbe essere un meccanismo adattativo per rispondere alle alterazioni dell’occlusione dentale.</small>}}


Tali modificazioni corticali includono, ad esempio, la variazione della latenza di attivazione della lingua tra emisferi cerebrali, la variazione del numero di siti corticali di attivazione linguale e mandibolare, e la modifica della profondità del centro di gravità delle aree corticali coinvolte. Questi risultati suggeriscono che la perdita e il successivo ripristino dei contatti occlusali possano alterare le rappresentazioni motorie orofacciali, aprendo la strada a nuovi modelli interpretativi della funzione masticatoria basati su neuroplasticità adattativa.
<blockquote>''Occlusal Dysmorphisms and not Malocclusion... which, as we will see shortly, is a completely different topic.''</blockquote>


Parallelamente, emerge che sia la corteccia somatosensoriale primaria (face-SI) sia la motoria (face-MI) giocano un ruolo centrale nell’integrazione sensomotoria orofacciale, partecipando non solo all'inizio e al controllo dei movimenti volontari (es. apertura mandibolare), ma anche a quelli semi-automatici come la masticazione e la deglutizione {{Tooltip|<sup>[23]</sup>|<ref>Avivi-Arber L, Martin R, Lee JC, Sessle BJ. The Face Sensorimotor Cortex and its Neuroplasticity in Health and Disease. J Dent Res. 2019;98(11):1184–94. doi:10.1177/0022034519865385</ref>|<small>🧠 La corteccia somatosensoriale e motoria facciale regola i movimenti orofacciali automatici e volontari. La loro neuroplasticità permette di adattarsi o meno ai cambiamenti orali (come alterazioni dell’occlusione o protesi), influenzando il recupero delle funzioni sensori-motorie e la qualità della vita, specialmente nei pazienti con disordini neurologici o dolore orofacciale.</small>}}
==Discussion==
The consideration of the masticatory system as a complex system is further validated in light of recent developments in neurophysiology applied to dental occlusion. Studies conducted on animal models, particularly Sprague-Dawley rats, have shown that even minimal occlusal modifications (e.g., trimming of the mandibular incisor) can induce significant changes in the primary motor cortex of the face (face-M1), with evident manifestations of functional and structural neuroplasticity{{Tooltip|<sup>[22]</sup>|<ref>Avivi-Arber L, Lee JC, Sessle BJ. Motor cortex neuroplasticity associated with dental occlusion. J Dent Res. 2015;94(12):1751–9. doi:10.1177/0022034515596345</ref>|<small>. 🧠 The modification of dental occlusion can influence oral sensorimotor functions, and not all patients can adapt to restorative treatments. By studying Sprague-Dawley rats, neuroplasticity of the facial primary motor cortex (face-M1) was observed in response to repeated trimming of the mandibular incisors, followed by the restoration of occlusal contacts. The changes, mapped with intracortical microstimulation (ICMS), showed significant differences between cerebral hemispheres in the latency and distribution of motor areas of the tongue and mandible. These results suggest that face-M1 neuroplasticity could be an adaptive mechanism to respond to alterations in dental occlusion.</small>}}


Queste due aree corticali, pur distinte per funzione, sono profondamente interconnesse: la face-MI riceve input continui dalla face-SI, e insieme formano il cosiddetto “face sensorimotor cortex”{{Tooltip|<sup>[24]</sup>|<ref>Iwata K, Sessle BJ. Neural Basis of Orofacial Functions in Health and Disease. J Dent Res. 2019;98(11):1185–1195. doi:10.1177/0022034519865372</ref>|<small>🧠 Questo articolo fornisce una panoramica dei meccanismi neurali coinvolti nelle funzioni somatosensoriali e motorie del viso e della bocca e, in misura più limitata, della faringe e della laringe. L’attenzione è rivolta in particolare alla base neurale del tatto, della temperatura e del dolore orofacciale, con un’enfasi speciale sul dolore, poiché esso è comune nella pelle, nei denti, nei muscoli, nelle articolazioni e in altri tessuti della regione orofacciale, e può provocare sofferenze a lungo termine attraverso diversi stati o sindromi dolorose. Viene inoltre posta particolare attenzione ai processi neurali che regolano i numerosi riflessi e le altre funzioni motorie dell’area orofacciale, in particolare quelli legati alla masticazione, alla deglutizione e alle funzioni neuromuscolari associate. Solo pochi dettagli sono dedicati ad altre importanti funzioni del viso e della bocca, come l’olfatto, il gusto e il linguaggio.</small>}} La loro attività integrata è mediata da circuiti centrali complessi, che comprendono proiezioni cortico-bulbari dirette ai nuclei motori dei nervi cranici (in primis il nucleo del trigemino), responsabili dell’attivazione muscolare mandibolare.
These cortical modifications include, for example, the variation in tongue activation latency between cerebral hemispheres, the variation in the number of cortical activation sites for the tongue and mandible, and the modification of the depth of the center of gravity of the involved cortical areas. These results suggest that the loss and subsequent restoration of occlusal contacts can alter orofacial motor representations, paving the way for new interpretative models of masticatory function based on adaptive neuroplasticity.


La capacità di queste aree di subire riorganizzazione plastica (neuroplasticità) rappresenta un meccanismo fondamentale con cui il sistema nervoso si adatta a modifiche periferiche—come la perdita dentale, traumi, o l’introduzione di protesi—nonché a stimolazioni sensoriali e all’apprendimento di nuove abilità motorie {{Tooltip|<sup>[25]</sup>|<ref>Review Prog Brain Res. 2011:188:71-82. doi: 10.1016/B978-0-444-53825-3.00010-3. Chapter 5--face sensorimotor cortex: its role and neuroplasticity in the control of orofacial movements. Barry J Sessle , PMID: 21333803 DOI: 10.1016/B978-0-444-53825-3.00010-3</ref>.}}<blockquote>Alla luce di questi dati, è evidente che le alterazioni della morfologia cranio-facciale e occlusale—tradizionalmente interpretate attraverso modelli biomeccanici statici—devono invece essere comprese in un’ottica funzionale dinamica. La valutazione clinica del paziente non può quindi prescindere da un’integrazione tra morfologia, funzione e risposta neurofisiologica. Non ogni "malocclusione" richiede trattamento, così come non ogni "occlusione ideale" garantisce benessere funzionale.</blockquote>In sintesi, la neuroplasticità trigeminale emerge come la chiave per comprendere l’adattamento (o la mancata adattabilità) a modifiche occlusali. Essa deve guidare sia la diagnosi che le strategie terapeutiche, ispirando protocolli riabilitativi realmente personalizzati. I trattamenti OrthoNeuroGnathodontici e non solo, in quanto fondati su questa visione sistemica, rappresentano il modello clinico più avanzato e coerente per affrontare le sfide dell’odontoiatria moderna.
Similarly, it emerges that both the primary somatosensory cortex (face-SI) and the motor cortex (face-MI) play a central role in orofacial sensorimotor integration, participating not only in the initiation and control of voluntary movements (e.g., mandibular opening) but also in semi-automatic movements such as chewing and swallowing {{Tooltip|<sup>[23]</sup>|<ref>Avivi-Arber L, Martin R, Lee JC, Sessle BJ. The Face Sensorimotor Cortex and its Neuroplasticity in Health and Disease. J Dent Res. 2019;98(11):1184–94. doi:10.1177/0022034519865385</ref>|<small>🧠 The facial somatosensory and motor cortex regulates automatic and voluntary orofacial movements. Their neuroplasticity allows adaptation or lack thereof to oral changes (such as occlusal alterations or prostheses), influencing the recovery of sensorimotor functions and quality of life, especially in patients with neurological disorders or orofacial pain.</small>}}


These two cortical areas, although distinct in function, are deeply interconnected: face-MI continuously receives input from face-SI, and together they form the so-called “face sensorimotor cortex”{{Tooltip|<sup>[24]</sup>|<ref>Iwata K, Sessle BJ. Neural Basis of Orofacial Functions in Health and Disease. J Dent Res. 2019;98(11):1185–1195. doi:10.1177/0022034519865372</ref>|<small>🧠 This article provides an overview of the neural mechanisms involved in the somatosensory and motor functions of the face and mouth and, to a lesser extent, the pharynx and larynx. The focus is particularly on the neural basis of touch, temperature, and orofacial pain, with special emphasis on pain, as it is common in the skin, teeth, muscles, joints, and other tissues of the orofacial region and can cause long-term suffering through various painful states or syndromes. Particular attention is also given to the neural processes that regulate the numerous reflexes and other motor functions of the orofacial area, particularly those related to chewing, swallowing, and associated neuromuscular functions. Only a few details are dedicated to other important functions of the face and mouth, such as smell, taste, and speech.</small>}} Their integrated activity is mediated by complex central circuits, which include corticobulbar projections directed to the motor nuclei of the cranial nerves (primarily the trigeminal nucleus), responsible for mandibular muscle activation.


== Conclusione ==
The ability of these areas to undergo plastic reorganization (neuroplasticity) represents a fundamental mechanism by which the nervous system adapts to peripheral changes—such as tooth loss, trauma, or the introduction of prostheses—as well as to sensory stimulations and the learning of new motor skills {{Tooltip|<sup>[25]</sup>|<ref>Review Prog Brain Res. 2011:188:71-82. doi: 10.1016/B978-0-444-53825-3.00010-3. Chapter 5--face sensorimotor cortex: its role and neuroplasticity in the control of orofacial movements. Barry J Sessle , PMID: 21333803 DOI: 10.1016/B978-0-444-53825-3.00010-3</ref>.|<Small>The range and complexity of orofacial movements require sophisticated neural circuitries that provide for the coordination and control of these movements and their integration with other motor patterns such as those associated with breathing and walking. This chapter is dedicated to Jim Lund whose many research studies have made major contributions to our knowledge of the role of brainstem and cerebral cortex in orofacial motor control. Our own investigations using intracortical microstimulation (ICMS), cortical cold block, and single neuron recordings have documented that the face primary motor area (MI) and primary somatosensory area (SI) are involved in the control not only of elemental and learned orofacial movements but also of the so-called semiautomatic movements such as mastication and swallowing, the control of which have been largely attributed in the past to brainstem mechanisms. Recent studies have also documented that neuroplasticity of the face sensorimotor cortex is a feature of humans and animals trained in a novel oral motor behavior, and that it reflects dynamic and adaptive events that can be modeled by behaviorally significant experiences, including pain and other alterations to the oral environment. Furthermore, our findings of the disruptive effects of the face sensorimotor cortex cold block indicate that the face MI and SI are also critical in the successful performance of an orofacial motor skill once it is learned. Future studies aimed at the further demonstration of such changes and at their underlying mechanisms and their sequence of appearance in the face sensorimotor cortex and associated cortical areas represent crucial steps for understanding the intracortical processes underlying neuroplasticity related to oral motor learning and adaptation. In view of the role that cortical neuronal ensembles play in motor execution, learning, and adaptation (Nicolelis and Lebedev, 2009), these studies should include the properties and plasticity of neuronal ensembles in several related cortical areas in addition to a specific focus on single neurones or efferent microzones within the face MI or SI. As recently noted (Martin, 2009; Sessle et al., 2007, 2009), such research approaches are also important for developing improved rehabilitative strategies to exploit these mechanisms in humans suffering from chronic orofacial pain or sensorimotor disorders.</Small>}}<blockquote>In light of these data, it is evident that alterations in craniofacial and occlusal morphology—traditionally interpreted through static biomechanical models—must instead be understood from a dynamic functional perspective. The clinical evaluation of the patient cannot therefore disregard an integration of morphology, function, and neurophysiological response. Not every "malocclusion" requires treatment, just as not every "ideal occlusion" guarantees functional well-being.</blockquote>In summary, trigeminal neuroplasticity emerges as the key to understanding adaptation (or lack thereof) to occlusal modifications. It must guide both diagnosis and therapeutic strategies, inspiring truly personalized rehabilitation protocols. OrthoNeuroGnathodontic treatments and beyond, being based on this systemic vision, represent the most advanced and coherent clinical model to address the challenges of modern dentistry.
.🔁 Prima di concludere, è essenziale chiarire che il 'sistema masticatorio' non può essere considerato come un semplice meccanismo biomeccanico senza connetterlo ad un sistema di controllo neurofisiologico che sostanzialmente determina un 'Sistema Complesso'. {{Tooltip|<sup>[26]</sup>|<ref>https://en.wikipedia.org/wiki/Complex_system</ref>|<small> 📌 Un sistema complesso è un sistema dinamico a multicomponenti, ovvero composto da diversi sottosistemi che tipicamente interagiscono tra loro in modo interdipendente, descrivibili analiticamente tramite modelli matematici. Questo tipo di sistema viene studiato nell'ambito della teoria della complessità.Si rende tipicamente necessario un approccio globale, in quanto non è possibile risolvere analiticamente tutti i componenti con le loro interazioni, mentre è utile affidarsi a complesse simulazioni al calcolatore per valutare/analizzare il comportamento dinamico di ciascun componente così come le reciproche interazioni, le quali possono essere descritte in maniera semplice ovvero lineare oppure non lineare (vedi sistema dinamico).Tipici dei sistemi complessi sono i concetti di autorganizzazione e comportamento emergente. L'assunzione di sistema complesso abbraccia dunque la maggior parte dei sistemi fisici reali a molte componenti, rispetto ai sistemi ritenuti "semplici", più tipici della fisica classica.</small>}}


🧩 Questo implica che elementi come:
== Conclusion ==
.🔁 Before concluding, it is essential to clarify that the 'masticatory system' cannot be considered merely as a simple biomechanical mechanism without connecting it to a neurophysiological control system that essentially determines a 'Complex System'. {{Tooltip|<sup>[26]</sup>|<ref>https://en.wikipedia.org/wiki/Complex_system</ref>|<small> 📌 A complex system is a dynamic multi-component system, composed of various subsystems that typically interact with each other in an interdependent manner, analytically describable through mathematical models. This type of system is studied within the field of complexity theory. A global approach is typically necessary, as it is not possible to analytically resolve all components with their interactions, while it is useful to rely on complex computer simulations to evaluate/analyze the dynamic behavior of each component as well as their mutual interactions, which can be described in a simple or linear manner or non-linear (see dynamic system). Typical of complex systems are the concepts of self-organization and emergent behavior. The assumption of a complex system thus embraces most real physical systems with many components, compared to systems considered "simple," more typical of classical physics.</small>}}


- occlusione dentale
🧩 This implies that elements such as:


- articolazione temporomandibolare
- dental occlusion


- recettori parodontali
- temporomandibular joint


- fusi neuromuscolari
- periodontal receptors


- sistema nervoso trigeminale centrale
- neuromuscular spindles


non agiscono isolatamente, segmentando il sistema biologico in biomeccanico e neurofisiologico  ma in 'sinergia', producendo un "Comportamento Emergente". {{Tooltip||2=Il **periodo silente masseterino** (MSP) è un esempio rilevante di comportamento emergente nella neurofisiologia masticatoria. Questo riflesso viene attivato da colpi improvvisi al mento, portando a una breve cessazione dell'attività elettrica nel muscolo massetere, ed è strettamente correlato al reclutamento delle unità motorie. Durante l'MSP, c'è una specifica modulazione del reclutamento delle unità motorie, regolata dal sistema nervoso centrale, per rispondere agli stimoli esterni. Nel contesto del comportamento emergente, questo riflesso non è limitato a un singolo muscolo, ma rappresenta una risposta coordinata che coinvolge sinergie tra vari centri neuronali e muscoli antagonisti. Matematicamente, possiamo descrivere la probabilità <math>P(R)</math> di una risposta emergente come funzione delle variabili in ingresso <math>x_1, x_2, \ldots, x_n</math> che influenzano l'attivazione delle unità motorie: <math>P(R) = f(x_1, x_2, \ldots, x_n)</math> dove <math>f</math> rappresenta l'interazione non lineare tra gli stimoli in arrivo (come il tipo e l'intensità del colpo al mento) e i processi di integrazione centrale del sistema trigeminale. Questo modello aiuta a comprendere come l'MSP rifletta una risposta integrata e adattativa che emerge da circuiti neurofisiologici complessi piuttosto che da un singolo percorso neurale.}}
- central trigeminal nervous system


📚 Un'importante sintesi concettuale è rappresentata dall’opera di 'Kazem Sadegh-Zadeh', "Handbook of Analytic Philosophy of Medicine", che descrive la medicina come scienza sistemica.{{Tooltip|<sup>[27]</sup>|<ref>{{cita libro|autore=Sadegh-Zadeh Kazem|titolo=Handbook of Analytic Philosophy of Medicine|url=https: //link.springer.com/book/10.1007/978-94-007-2260-6|anno=2012|editore=Springer|ISBN=978-94-007-2259-0}}</ref>|<small>📌 La pratica medica è moralità praticata e la ricerca clinica appartiene all'etica normativa. Il presente libro chiarisce e sviluppa questa tesi: 1. analizzando la struttura del linguaggio, della conoscenza e delle teorie mediche; 2. indagando i fondamenti dell'incontro clinico; 3. introducendo la logica e la metodologia del processo decisionale clinico; 4. suggerendo teorie complete su organismo, vita e psiche; su salute, malattia e patologia; su eziologia, diagnosi, prognosi, prevenzione e terapia; e 5. indagando le questioni morali e metafisiche centrali nella pratica e nella ricerca medica.</small>}}
do not act in isolation, segmenting the biological system into biomechanical and neurophysiological but in 'synergy', producing an "Emergent Behavior". {{Tooltip||2=The **masseter silent period** (MSP) is a relevant example of emergent behavior in masticatory neurophysiology. This reflex is activated by sudden blows to the chin, leading to a brief cessation of electrical activity in the masseter muscle, and is closely related to the recruitment of motor units. During MSP, there is a specific modulation of motor unit recruitment, regulated by the central nervous system, to respond to external stimuli. In the context of emergent behavior, this reflex is not limited to a single muscle but represents a coordinated response involving synergies between various neuronal centers and antagonist muscles. Mathematically, we can describe the probability <math>P(R)</math> of an emergent response as a function of the input variables <math>x_1, x_2, \ldots, x_n</math> that influence the activation of motor units: <math>P(R) = f(x_1, x_2, \ldots, x_n)</math> where <math>f</math> represents the non-linear interaction between incoming stimuli (such as the type and intensity of the blow to the chin) and the central integration processes of the trigeminal system. This model helps to understand how MSP reflects an integrated and adaptive response that emerges from complex neurophysiological circuits rather than from a single neural pathway.}}


🧠 Gli elementi del sistema masticatorio sono coerenti con l’attività del sistema nervoso trigeminale centrale, come evidenziato nei test elettrofisiologici. Questo rafforza l’idea che la "Malocclusione" sia una 'categoria euristica insufficiente': il termine corretto è "Dismorfismo Occlusale".
📚 An important conceptual synthesis is represented by the work of 'Kazem Sadegh-Zadeh', "Handbook of Analytic Philosophy of Medicine", which describes medicine as a systemic science.{{Tooltip|<sup>[27]</sup>|<ref>{{cita libro|autore=Sadegh-Zadeh Kazem|titolo=Handbook of Analytic Philosophy of Medicine|url=https: //link.springer.com/book/10.1007/978-94-007-2260-6|anno=2012|editore=Springer|ISBN=978-94-007-2259-0}}</ref>|<small>📌 Medical practice is practiced morality and clinical research belongs to normative ethics. This book clarifies and develops this thesis: 1. analyzing the structure of medical language, knowledge, and theories; 2. investigating the foundations of the clinical encounter; 3. introducing the logic and methodology of clinical decision-making; 4. suggesting comprehensive theories on organism, life, and psyche; on health, disease, and pathology; on etiology, diagnosis, prognosis, prevention, and therapy; and 5. investigating the central moral and metaphysical issues in medical practice and research.</small>}}


{{q2|Riconoscere il sistema masticatorio come "Sistema Complesso" non esclude la validità di terapie ortodontiche o protesiche, ma le arricchisce, promuovendo una prospettiva funzionale e neurofisiologica.}}
🧠 The elements of the masticatory system are consistent with the activity of the central trigeminal nervous system, as evidenced in electrophysiological tests. This reinforces the idea that "Malocclusion" is an 'insufficient heuristic category': the correct term is "Occlusal Dysmorphism".


🏁 In questo contesto, i trattamenti 'OrthoNeuroGnathodontici' emergono come paradigmatici: integrano estetica, funzione e neuroscienze per raggiungere:
{{q2|Recognizing the masticatory system as a "Complex System" does not exclude the validity of orthodontic or prosthetic therapies, but enriches them, promoting a functional and neurophysiological perspective.}}


- stabilità occlusale
🏁 In this context, 'OrthoNeuroGnathodontic' treatments emerge as paradigmatic: they integrate aesthetics, function, and neurosciences to achieve:


- prevenzione delle recidive
- occlusal stability


- resilienza funzionale
- prevention of relapses


📖 Studi recenti confermano l'importanza della stabilità post-terapia:{{Tooltip|<sup>[28]</sup>|<ref>Essam Ahmed Al-Moraissi, Larry M Wolford.Is Counterclockwise Rotation of the Maxillomandibular Complex Stable Compared With Clockwise Rotation in the Correction of Dentofacial Deformities? A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg. 2016 Oct;74(10):2066.e1-12. doi:10.1016/j.joms.2016.06.001</ref>|<small><nowiki>📌 Confrontare la stabilità scheletrica post-chirurgica tra la rotazione antioraria (CCWR) del complesso maxillo-mandibolare (MMC) e la rotazione oraria (CWR) del MMC per la correzione delle deformità dento-facciali. Materiali e metodi: Per raggiungere lo scopo dello studio, abbiamo progettato e implementato una revisione sistematica con meta-analisi basata sulle linee guida PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). È stata sviluppata una strategia di ricerca e condotta una ricerca nei principali database – PubMed, Embase e Cochrane Central Register of Controlled Trials (CENTRAL) – per trovare tutti gli articoli pertinenti pubblicati dall'inizio fino a marzo 2016. I criteri di inclusione erano studi clinici randomizzati controllati, studi clinici controllati, studi retrospettivi e serie di casi, con l'obiettivo di confrontare la stabilità post-chirurgica della CCWR e della CWR del MMC. 🧪 L'analisi è stata eseguita utilizzando l'analisi cefalometrica laterale dei valori medi post-operatori e la correlazione tra le variazioni chirurgiche e post-operatorie dell'angolo del piano occlusale e le variazioni lineari nei punti A e B. È stata eseguita un'analisi della differenza media ponderata utilizzando un modello a effetti casuali con intervalli di confidenza al 95%.Risultati: Un totale di 133 pazienti sono stati arruolati da 3 studi (CCWR, n = 83; CWR, n = 50). 🧪 Tutti gli studi inclusi presentavano un rischio moderato di bias. 🧠 Vi è stata una differenza statisticamente significativa tra CCWR e CWR della MMC nelle variazioni post-operatorie dell'angolo del piano occlusale (P = 0,034), ma non è stata riscontrata alcuna differenza statisticamente significativa nella correlazione tra le variazioni chirurgiche e post-operatorie dell'angolo del piano occlusale nei 2 gruppi. Non è stata rilevata alcuna differenza statisticamente significativa tra CCWR e CWR dell'MMC per quanto riguarda la stabilità tra le valutazioni immediatamente successive all'intervento chirurgico e al follow-up più lungo, relativamente alle posizioni verticale e orizzontale nei punti A e B (P > 0,05). Conclusione:Lo CCWR, rispetto a CWR, per la correzione delle deformità dentofacciali in assenza di patologie preesistenti dell'articolazione temporo-mandibolare, risulta scheletricamente stabile rispetto alle alterazioni post-chirurgiche del piano occlusale, nonché alle alterazioni verticali e orizzontali di mascella e mandibola</nowiki></small>|}}{{Tooltip|<sup>[29]</sup>|<ref>J Hoffmannová et al.[https://pubmed.ncbi.nlm.nih.gov/19537679/ Fattori che influenzano la stabilità dell’osteotomia sagittale del ramo mandibolare]. Prague Med Rep. 2008;109(4):286–97.</ref>|<small>📌 La stabilità dell'osteotomia sagittale bilaterale (BSSO) è un obiettivo importante per ogni chirurgo. Nell'articolo vengono esaminati i fattori che influenzano la stabilità del risultato chirurgico. Particolare enfasi viene data ai diversi tipi di fissazione dei frammenti ossei. Vengono discussi i loro vantaggi e svantaggi nell'uso clinico. 🧠 La recidiva dopo BSSO è generalmente classificata come precoce e a lungo termine. La recidiva precoce è solitamente causata da movimenti nel sito dell'osteotomia o da cedimento dell'articolazione temporo-mandibolare e dovrebbe essere definita dislocazione chirurgica. La recidiva a lungo termine si verifica a causa del progressivo riassorbimento condilare dell'articolazione temporo-mandibolare, che causa una perdita di altezza del ramo condilare e mandibolare. Sono stati descritti quattro diversi tipi di fissazione in chirurgia ortognatica: fissazione intermascellare rigida, osteosutura, osteosintesi e fissazione con materiali biodegradabili.</small>}}
- functional resilience


📖 Recent studies confirm the importance of post-therapy stability:{{Tooltip|<sup>[28]</sup>|<ref>Essam Ahmed Al-Moraissi, Larry M Wolford.Is Counterclockwise Rotation of the Maxillomandibular Complex Stable Compared With Clockwise Rotation in the Correction of Dentofacial Deformities? A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg. 2016 Oct;74(10):2066.e1-12. doi:10.1016/j.joms.2016.06.001</ref>|<small><nowiki>📌 Comparing the post-surgical skeletal stability between counterclockwise rotation (CCWR) of the maxillomandibular complex (MMC) and clockwise rotation (CWR) of the MMC for the correction of dentofacial deformities. Materials and methods: To achieve the study's purpose, we designed and implemented a systematic review with meta-analysis based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A search strategy was developed and a search was conducted in major databases – PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) – to find all relevant articles published from the beginning until March 2016. Inclusion criteria were randomized controlled clinical trials, controlled clinical trials, retrospective studies, and case series, with the aim of comparing the post-surgical stability of CCWR and CWR of the MMC. 🧪 The analysis was performed using lateral cephalometric analysis of mean post-operative values and the correlation between surgical and post-operative changes in the occlusal plane angle and linear changes in points A and B. A weighted mean difference analysis was performed using a random-effects model with 95% confidence intervals. Results: A total of 133 patients were enrolled from 3 studies (CCWR, n = 83; CWR, n = 50). 🧪 All included studies had a moderate risk of bias. 🧠 There was a statistically significant difference between CCWR and CWR of the MMC in post-operative changes in the occlusal plane angle (P = 0.034), but no statistically significant difference was found in the correlation between surgical and post-operative changes in the occlusal plane angle in the 2 groups. No statistically significant difference was found between CCWR and CWR of the MMC regarding stability between immediate post-surgical and longest follow-up evaluations, concerning vertical and horizontal positions at points A and B (P > 0.05). Conclusion: CCWR, compared to CWR, for the correction of dentofacial deformities in the absence of pre-existing temporomandibular joint pathologies, is skeletally stable concerning post-surgical changes in the occlusal plane, as well as vertical and horizontal changes in the maxilla and mandible</nowiki></small>|}}{{Tooltip|<sup>[29]</sup>|<ref>J Hoffmannová et al.[https://pubmed.ncbi.nlm.nih.gov/19537679/ Factors influencing the stability of sagittal split ramus osteotomy]. Prague Med Rep. 2008;109(4):286–97.</ref>|<small>📌 The stability of bilateral sagittal split osteotomy (BSSO) is an important goal for every surgeon. The article examines the factors influencing the stability of the surgical outcome. Particular emphasis is given to the different types of fixation of bone fragments. Their advantages and disadvantages in clinical use are discussed. 🧠 Recurrence after BSSO is generally classified as early and long-term. Early recurrence is usually caused by movements at the osteotomy site or failure of the temporomandibular joint and should be defined as surgical dislocation. Long-term recurrence occurs due to progressive condylar resorption of the temporomandibular joint, causing a loss of condylar and mandibular ramus height. Four different types of fixation in orthognathic surgery have been described: rigid intermaxillary fixation, osteosuture, osteosynthesis, and fixation with biodegradable materials.</small>}}


📌 Questo paradigma 'non sostituisce' i modelli classici, ma 'li estende', creando un ponte tra biomeccanica, neuroscienze e medicina sistemica.<blockquote>{{qnq|Cosa intendiamo per “Sistemi Complessi” quando parliamo di funzioni masticatorie?}}</blockquote>


== 📌 Premessa epistemologica: il linguaggio prima dei sistemi complessi ==
📌 This paradigm 'does not replace' classical models, but 'extends them', creating a bridge between biomechanics, neurosciences, and systemic medicine.<blockquote>{{qnq|What do we mean by “Complex Systems” when we talk about masticatory functions?}}</blockquote>
<blockquote>Prima ancora di affrontare la definizione di ''sistemi complessi'' in medicina, è necessario riconsiderare il modo in cui utilizziamo e interpretiamo il linguaggio medico, tanto sul piano semantico quanto su quello formale.</blockquote>In particolare, la struttura epistemica del linguaggio medico presenta ambiguità concettuali profonde: concetti come ''malattia'', ''normalità'', ''funzione'' e ''adattamento'' sono spesso assunti come invarianti, pur essendo storicamente e culturalmente determinati.


Come sottolinea '''Kazem Sadegh-Zadeh''' nella sua monumentale opera ''Handbook of Analytic Philosophy of Medicine'', il linguaggio della medicina è intrinsecamente fuzzy: molte delle sue definizioni operano su categorie graduali e non binarie, dove l'imprecisione semantica non è un limite, ma una componente strutturale del sapere clinico.{{Tooltip|<sup>[30]</sup>|<ref>{{cita libro|autore=Sadegh-Zadeh Kazem|titolo=Handbook of Analytic Philosophy of Medicine|url=https: //link.springer.com/book/10.1007/978-94-007-2260-6|anno=2012|editore=Springer|ISBN=978-94-007-2259-0}}</ref>|<small>🧠 La pratica medica è moralità praticata e la ricerca clinica appartiene all'etica normativa. Il presente libro chiarisce e sviluppa questa tesi: 1. analizzando la struttura del linguaggio, della conoscenza e delle teorie mediche; 2. indagando i fondamenti dell'incontro clinico; 3. introducendo la logica e la metodologia del processo decisionale clinico; 4. suggerendo teorie complete su organismo, vita e psiche; su salute, malattia e patologia; su eziologia, diagnosi, prognosi, prevenzione e terapia; e 5. indagando le questioni morali e metafisiche centrali nella pratica e nella ricerca medica.</small>}}
== 📌 Epistemological Premise: Language Before Complex Systems ==
<blockquote>Even before addressing the definition of ''complex systems'' in medicine, it is necessary to reconsider the way we use and interpret medical language, both on the semantic and formal levels.</blockquote>In particular, the epistemic structure of medical language presents deep conceptual ambiguities: concepts such as ''disease'', ''normality'', ''function'' and ''adaptation'' are often assumed to be invariant, despite being historically and culturally determined.


Analogamente, '''Eric Cassell''' ha mostrato che il concetto di malattia non può essere ridotto né a una disfunzione biologica né a una mera deviazione statistica: è piuttosto il risultato di una negoziazione semantica tra paziente, clinico e contesto culturale.{{Tooltip|<sup>[31]</sup>|<ref>Cassell EJ. "The Nature of Suffering and the Goals of Medicine." ''The New England Journal of Medicine'', 1982. doi:10.1056/NEJM198203183061204.</ref>|<small>🧠 La questione della sofferenza e la sua relazione con le malattie organiche sono state raramente affrontate nella letteratura medica. Questo articolo offre una descrizione della natura e delle cause della sofferenza nei pazienti sottoposti a trattamento medico. Viene fatta una distinzione, basata su osservazioni cliniche, tra sofferenza e disagio fisico. La sofferenza è sperimentata dalle persone, non solo dai corpi, e ha origine da sfide che minacciano l'integrità della persona come entità sociale e psicologica complessa. La sofferenza può includere il dolore fisico, ma non si limita a esso. Il sollievo dalla sofferenza e la cura della malattia devono essere considerati come due doveri complementari di una professione medica che si dedica veramente alla cura del malato. L'incapacità dei medici di comprendere la natura della sofferenza può portare a un intervento medico che (sebbene tecnicamente adeguato) non solo non riesce ad alleviare la sofferenza, ma diventa esso stesso fonte di sofferenza</small>}}
As '''Kazem Sadegh-Zadeh''' emphasizes in his monumental work ''Handbook of Analytic Philosophy of Medicine'', the language of medicine is intrinsically fuzzy: many of its definitions operate on gradual and non-binary categories, where semantic imprecision is not a limitation, but a structural component of clinical knowledge.{{Tooltip|<sup>[30]</sup>|<ref>{{cita libro|autore=Sadegh-Zadeh Kazem|titolo=Handbook of Analytic Philosophy of Medicine|url=https: //link.springer.com/book/10.1007/978-94-007-2260-6|anno=2012|editore=Springer|ISBN=978-94-007-2259-0}}</ref>|<small>🧠 Medical practice is practiced morality and clinical research belongs to normative ethics. This book clarifies and develops this thesis: 1. analyzing the structure of medical language, knowledge, and theories; 2. investigating the foundations of the clinical encounter; 3. introducing the logic and methodology of clinical decision-making; 4. suggesting comprehensive theories on organism, life, and psyche; on health, disease, and pathology; on etiology, diagnosis, prognosis, prevention, and therapy; and 5. investigating the central moral and metaphysical issues in medical practice and research.</small>}}


Infine, il modello biopsicosociale di '''George Engel''' propone di interpretare ogni evento clinico all’interno di una rete multilivello di significati—biologici, psicologici, sociali e semantici—anticipando quella visione sistemica e complessa oggi al centro della medicina contemporanea.{{Tooltip|<sup>[32]|<ref>Engel GL. "The need for a new medical model: a challenge for biomedicine." ''Science'', 1977;196(4286):129–136. doi:10.1126/science.847460.</ref>}}
Similarly, '''Eric Cassell''' has shown that the concept of disease cannot be reduced to either a biological dysfunction or a mere statistical deviation: it is rather the result of a semantic negotiation between patient, clinician, and cultural context.{{Tooltip|<sup>[31]</sup>|<ref>Cassell EJ. "The Nature of Suffering and the Goals of Medicine." ''The New England Journal of Medicine'', 1982. doi:10.1056/NEJM198203183061204.</ref>|<small>🧠 The issue of suffering and its relationship to organic diseases has rarely been addressed in the medical literature. This article offers a description of the nature and causes of suffering in patients undergoing medical treatment. A distinction is made, based on clinical observations, between suffering and physical discomfort. Suffering is experienced by people, not just bodies, and originates from challenges that threaten the integrity of the person as a complex social and psychological entity. Suffering can include physical pain, but it is not limited to it. The relief of suffering and the cure of disease must be considered as two complementary duties of a medical profession truly dedicated to the care of the sick. The inability of physicians to understand the nature of suffering can lead to medical intervention that (although technically adequate) not only fails to relieve suffering but becomes itself a source of suffering.</small>}}


{{q2|Dunque, solo dopo aver chiarito la natura ''meta-linguistica'' e ''meta-concettuale'' dei termini che utilizziamo, potremo affrontare in modo coerente e produttivo la sfida teorica e clinica dei sistemi complessi in medicina.}}
Finally, the biopsychosocial model of '''George Engel''' proposes to interpret every clinical event within a multi-level network of meanings—biological, psychological, social, and semantic—anticipating that systemic and complex vision that is now at the center of contemporary medicine.{{Tooltip|<sup>[32]</sup>|<ref>Engel GL. "The need for a new medical model: a challenge for biomedicine." ''Science'', 1977;196(4286):129–136. doi:10.1126/science.847460.</ref>|<Small>The dominant model of disease today is biomedical, and it leaves no room within tis framework for the social, psychological, and behavioral dimensions of illness. A biopsychosocial model is proposed that provides a blueprint for research, a framework for teaching, and a design for action in the real world of health care.>/Small>}}


{{q2|Thus, only after clarifying the ''meta-linguistic'' and ''meta-conceptual'' nature of the terms we use, can we coherently and productively address the theoretical and clinical challenge of complex systems in medicine.}}


</div>
</div>
{{Bib}}
{{Bib}}


{{apm}}[[Category:Introduzione]]
{{apm}}[[Category:Introduction]]
<onlyinclude></onlyinclude>
<onlyinclude></onlyinclude>

Versione attuale delle 22:56, 2 mag 2025

Introduction


Masticationpedia
Masticationpedia
Article by: Gianni Frisardi

Abstract

The masticatory system, which includes teeth, occlusion, muscles, joints, and the central and peripheral nervous system, is increasingly understood as a complex system rather than a simple biomechanical mechanism. This shift in perspective aligns with Thomas Kuhn's stages of paradigm changes, where anomalies in traditional models trigger the search for new paradigms. In the context of Masticationpedia, a new interdisciplinary approach to the diagnosis and treatment of malocclusion emerges, focusing on "Occlusal Dysmorphisms" rather than "Malocclusions." Recent advances in electrophysiological tests, such as motor evoked potentials and mandibular reflexes, reveal functional symmetry in the masticatory system, even in patients with occlusal discrepancies. This discovery challenges the traditional understanding of malocclusion, suggesting that neuromuscular dynamics play a crucial role in maintaining masticatory function. Consequently, interdisciplinary diagnoses that consider both occlusal and neuromuscular factors are necessary for accurate diagnosis and effective treatment.

This paradigm shift has implications for current rehabilitative therapies, including orthodontics and prosthetics, which have traditionally focused on achieving occlusal stability. However, considering the masticatory system as a complex system requires an integrative approach that incorporates both aesthetic and neurophysiological factors to prevent relapses and achieve long-term functional stability. The emerging field of OrthoNeuroGnathodontic treatments exemplifies this interdisciplinary approach, offering innovative strategies to address masticatory disorders.

Viewing the masticatory system through the lens of complexity science, the field of dentistry can expand its understanding of occlusal stability and dysfunction, ultimately leading to new treatment paradigms that improve patient outcomes. This new model does not replace traditional treatments but seeks to enrich them with a broader interdisciplinary perspective, in line with the evolution of masticatory rehabilitation science.

🚀 Call for Authors – Unleash Your Intellectual Brilliance!
(Click to discover suggested topics for publishing on Masticationpedia)

The clinical encyclopedia dedicated to masticatory rehabilitation invites you to propose articles on the following key themes to stay aligned with the philosophical and scientific 'Mission' of Masticationpedia:

  • masticatory system
  • new paradigm
  • neuromuscular dynamics
  • relapses
  • complexity science
  • complex clinical cases

👨‍⚕️ If you are a visionary clinician or researcher, start your publication from here

Ab ovo [1][1]
Latin for 'from the beginning'

Before delving into the analysis of Masticationpedia, we must first introduce some preliminary considerations, particularly regarding two fundamental dimensions—social and scientific-clinical—that characterize both the current era and the one immediately preceding it.

The Phases of Paradigm Change According to Thomas Kuhn

In the last hundred years, technological and methodological innovations [2][2]
🧪 Cross-sectional study analyzing dental innovations over the past 30 years, identifying those that practicing dentists believe have most influenced patient care. 🧬 Thirty experts from the International Association for Dental Research selected the most relevant innovations, which were then surveyed among U.S. dentists who graduated before 1995 and were clinically active for over 50% of the time. 🧩 The most cited innovations were adhesive materials (74.5%), dental implants (71.9%), direct bonding (71.2%), magnifying lenses (54.7%), universal infection control precautions (48.6%), and digital imaging (46.0%), with differences between generalists and specialists: oral surgeons and periodontists (OMSPER) also favored CBCT (74%) and regenerative techniques (68%). The general consensus highlights the importance of implants, imaging, lenses, and universal precautions; generalists value adhesive materials and bonding, while specialists cite CBCT and tissue engineering. 📌 The study concludes that innovations with direct clinical impact are perceived as the most decisive, suggesting that future research should also consider cost-effectiveness and patient perception.
have exponentially increased, even in dentistry. These developments have had a significant impact on clinical decision-making, schools of thought, and the fundamental principles of the discipline, with the explicit goal of improving quality of life. A notable example is the vision proposed in "Exposure Science in the 21st Century"[3][3]
The document Exposure Science in the 21st Century: A Vision and a Strategy (2012) by the National Academy of Sciences proposes a renewed vision of exposure science, aiming to address emerging challenges for human and environmental health. 🧠 What is exposure science? Exposure science studies the contact between humans or other organisms and environmental agents (chemical, physical, or biological), analyzing the duration, intensity, and effects of such exposures. This discipline is crucial for understanding how environmental stressors affect health and for developing prevention and mitigation strategies. 🌐 The proposed vision: the “eco-exposome” The concept of “eco-exposome” extends exposure science from the point of contact between stressor and receptor within the organism to the surrounding environment, including the ecosphere. 🔬 Technological innovations and strategic collaborations: The document highlights technological advancements, such as advanced environmental sensors, analytical methods, molecular technologies, and computational tools, which offer new opportunities to collect more accurate and comprehensive data on exposures. 🛠️ Implementing the vision: To realize this vision, it is necessary to: Develop standardized and non-targeted methods to collect information on exposures. 🎯 Long-term goals: The ultimate goal is to use exposure science to: Quickly assess and mitigate exposures to emerging threats. 📌 In summary, the document proposes a transformation of exposure science, moving from an approach focused on individual stressors to an integrated and holistic vision, to address the environmental and health challenges of the 21st century.

However, this accelerated growth is not without conceptual side effects. Some of these effects may be ambiguous, if not outright contrary to apparent progress, generating clinical and scientific paradoxes.[4][4]
Monoclonal antibodies (MAbs) have ushered in a new era of targeted therapies, particularly in the fields of immunotherapy and oncology. MAbs have evolved from murine antibodies to fully human antibodies, with significant improvements in immunogenicity and safety. However, the safety of these agents is of particular concern, with reports of side effects associated with their use. These side effects have shaken the confidence of many researchers in MAbs. 🧠 This review comprehensively summarizes the side effects of MAbs in clinical use, highlighting the prevention and management of adverse reactions. Although many MAbs are well tolerated, and new MAbs are continuously being developed, it is difficult to guarantee that every new formulation is completely safe. The clinical use of MAbs will face increasing challenges in the future. Physicians should be vigilant about potentially lethal side effects and treat them as soon as possible.

Such ambiguities, instead of weakening the entire epistemological structure, are a symptom of a mature system capable of recognizing its own limits and seeking a paradigm evolution, as described by Thomas Kuhn in his famous theory on the development of science.

Kuhn's Phases in Dentistry

Thomas Kuhn identifies five distinct phases in the evolution of a scientific paradigm. In Masticationpedia, we will focus on the three most relevant ones, which best fit the evolution of masticatory rehabilitation science.

Phase 2 – Normal Science:
In this phase, researchers operate within an accepted paradigm, seeking to solve specific problems and refine the dominant model. However, the first "anomalies" emerge, phenomena that do not fully fit the current theory, generating an initial signal of instability.

Phase 4 – Paradigm Crisis:
The anomalies increase to the point of undermining confidence in the existing paradigm. It is a moment of crisis: the old theories no longer explain the new data. In this phase, Masticationpedia critically positions itself, proposing a revision of traditional occlusal models, paving the way for the next phase.

Phase 5 – Scientific Revolution:
The dominant paradigm is abandoned and a new one is adopted, not necessarily "truer," but better suited to explain emerging phenomena. In Masticationpedia, this translates into a new interpretation of masticatory function as a complex neurophysiological system and not just a biomechanical one.

Epistemology

The black swan symbolizes one of the historical problems of epistemology: if all the swans we have seen so far are white, can we decide that all swans are white?
Kuhn used optical illusions to demonstrate how a paradigm shift can make a person perceive the same information in a completely different way.

Epistemology (from the Greek ἐπιστήμη, epistēmē, “certain knowledge” or “science”, and λόγος, logos, “discourse”) is the branch of philosophy that studies the necessary conditions for acquiring scientific knowledge and the methods through which it is achieved.[5][5]
The term was coined by the Scottish philosopher James Frederick Ferrier, in his Institutes of Metaphysic (1854); see Internet Encyclopedia of Philosophy, James Frederick Ferrier (1808—1864)

In particular, epistemology analyzes the foundations, validity, and limits of scientific knowledge. In English-speaking countries, the term "epistemology" is often used as a synonym for the theory of knowledge or gnoseology.

The central problem of epistemology, today as in the time of Hume,[6][6]
📌 David Hume, son of lawyer Joseph Home of Chirnside and Katherine Falconer, daughter of the president of the College of Justice, was born the third child in a mansion on the north side of the Lawnmarket in Edinburgh. Although of noble origins, his family was not very wealthy, and he was entrusted with a small portion of their estate. He changed his surname from Home to Hume in 1734 to better maintain the Scottish pronunciation even in England.
[7][7]
📌 Scientific knowledge should be verifiable. Replications promote verifiability in several ways. Most directly, replications can confirm empirical claims. Replication research also promotes the dissemination of information necessary for other aspects of verification; creates meta-scientific knowledge about which results to consider credible even in the absence of replications; and reinforces a broader norm that scientists should check each other's work.
is the issue of verifiability.

According to Hempel's paradox, every example that does not contradict a theory confirms it. This is expressed in propositional logic as:

AB=¬AB  Consider the following statement: ✅ “If a person has TMD, then they experience orofacial pain.” We can represent this in logic as AB=¬AB, where: 🎯A represents "The person has TMD." 🎯 B represents "The person experiences orofacial pain." In this case, "If a person has TMD, then they experience orofacial pain" is equivalent to saying “either the person does not have TMD (¬A), or they experience orofacial pain (B).” 🧠 The formula is true in the following cases: If the person does not have TMD (¬A), the statement is true regardless of orofacial pain. If the person has TMD (A) and experiences orofacial pain (B), the statement is true. The statement is false only if the person has TMD (A) but does not experience orofacial pain (¬B), contradicting the implication condition.

But no theory can be definitively confirmed: an infinite number of future experiments could always refute it.[8][8]
📌 A fundamental issue in the theory of statistical inference concerns how one should measure statistical evidence. Certainly, terms like “statistical evidence” or simply “evidence” are widely used in statistical contexts. However, it is fair to say that a precise characterization of this concept remains somewhat elusive. Our goal here is to provide a definition of how to measure statistical evidence in relation to a specific statistical problem. Since evidence is what causes belief change, it is proposed to measure evidence based on the extent of belief change, from the prior to the posterior moment. 🧠 Consequently, our definition implies the existence of pre-existing beliefs, which raises questions about subjectivity and objectivity in statistical analyses. This aspect is addressed through a principle that requires the falsifiability of every element involved in the statistical analysis. These considerations lead to the need to verify any conflicts between prior beliefs and observed data, and to measure the prior bias present in an initial distribution

But it's not all that obvious...

P-value

In medicine, we often rely on statistical inference to validate experimental results. One of the most well-known tools is the 'P-value', or probability value, an indicator used in significance testing. The P-value represents the probability that the observed results are due to chance, assuming the null hypothesis H0 is true. It should not be used as a binary criterion (e.g., p<0.05) for scientific decisions, as values close to the threshold require additional verification, such as cross-validation. P-hacking (repeating tests to achieve significance) increases false positives. Rigorous experimental designs and transparency about all tests conducted can mitigate this risk. Type I error increases with multiple tests: for N independent tests at threshold α, the Family-Wise Error Rate (FWER) is FWER=1(1α)N. The Bonferroni correction divides the threshold by N, p<αN, but can increase false negatives. The Benjamini-Hochberg False Discovery Rate (FDR) allows more discoveries with an acceptable proportion of false positives. The Bayesian approach uses prior knowledge to balance prior and data with a posterior distribution, offering a valid alternative to the P-value. To combine P-values from multiple studies, meta-analysis uses methods like Fisher's: χ2=2ln(pi). 🧠 In summary, the P-value remains useful if contextualized and integrated with other measures, such as confidence intervals and Bayesian approaches.

However, even the P-value, for years a fundamental criterion in evidence-based medicine, is now undergoing profound revision. In 2019, a campaign published in "Nature", signed by over 800 scientists, questioned the rigid use of statistical significance.[9][9]
📌 In the March edition of Nature, over 800 scientists signed a commentary calling for the retirement of the term “statistical significance” [1]. The main arguments of the authors concern the fact that the scientific literature is full of erroneous and potentially harmful interpretations of associations based on an arbitrary and binary classification, founded on a p-value of 0.05. The authors illustrate the critical issues of this approach, providing concrete examples where it has led to erroneous conclusions within and between different studies. 🧠 Additionally, analyzing 791 articles published in five academic journals, they found that 51% of them misinterpreted a statistically non-significant result as an indication of the absence of an effect.
This "silent revolution" in the field of statistical inference promotes a more reflective, contextual, and scientifically honest approach. Among the most authoritative voices in this debate are:

  • Rodgers JL – who speaks of a “silent methodological revolution”[10][10]
    📌 In recent decades, a silent methodological revolution has occurred almost without discussion: a revolution in modeling. In contrast, the 20th century ended with lively debates about the utility of null hypothesis significance testing (NHST). However, this controversy may have been at least partly irrelevant, as the modeling revolution has rendered the NHST debate superfluous in various ways. I begin by presenting a history of NHST and modeling, and the relationships between the two. Next, I define and illustrate the principles guiding the development and evaluation of mathematical models. This is followed by a discussion on the difference between using statistical procedures in a rule-based framework and constructing mathematical models within a scientific epistemology. 🧠 In postgraduate psychology education, almost exclusive attention is given to the first, rule-based approach. The pedagogical implications of this imbalance and the need for revised teaching to account for the modeling revolution are then described. Finally, the discussion turns to how focusing on modeling leads to an evolution of statistical practice in more progressive directions. The epistemological basis of statistics has shifted: from a set of mechanically applied procedures to the construction and evaluation of statistical and scientific models.
  • Meehl P – who suggests replacing significance tests with 'confidence intervals' and 'verifiable numerical predictions'[11][11]
    📌 Significance tests have a role in social science research, but their widespread use in theory evaluation is often harmful. The cause of this does not lie in the mathematics itself, but in the poor understanding, by social scientists, of the logical relationship between theory and facts, i.e., a lack of methodological or epistemological clarity.🧭 Theories imply observations, but the reverse is not true. Although a theory's success in deriving a fact tends to corroborate it, this confirmation is weak unless the fact has a very low a priori probability and there are few plausible alternative theories. 🧭 Detecting a non-zero difference or correlation — as occurs when rejecting the null hypothesis — generally does not have a very low a priori probability, because in social sciences practically everything is correlated with everything else, regardless of the theory. 🎯 In the "strong" use of significance tests, the theory predicts a precise numerical value, or a very narrow range, so the test poses a serious risk of falsification if the theory were objectively incorrect. In general, it is preferable to construct a confidence interval, which provides richer information and still implies the null hypothesis's refutation if a difference falls outside the interval. 🧠 Significance tests are usually more justifiable in technological contexts (e.g., evaluating an intervention) rather than in theory evaluation. It would be useful to have a quantitative index measuring how accurately a theory predicts a risky fact, and an example of such an index is proposed. Unlike current widespread practices, textbooks and statistics courses should clarify and emphasize the significant semantic (logical) gap separating a substantive (causal, compositional) theory from a statistical hypothesis.
  • Sprenger & Hartmann – proponents of the 'Bayesian philosophy of science'[12][12]
    📌 How should we reason in science? Jan Sprenger and Stephan Hartmann offer an innovative view on classic themes in the philosophy of science, using a single key concept to explain and clarify numerous aspects of scientific reasoning. 🧭 They propose that good arguments and good inferences are characterized by their effect on our rational degrees of belief. 🧠 Contrary to the view that there is no room for subjective attitudes in "objective science," Sprenger and Hartmann explain the value of compelling evidence through a cycle of variations on the theme of representing rational degrees of belief through subjective probabilities (and their modification through Bayesian conditioning). In this way, they integrate Bayesian inference — the main theory of rationality in the social sciences — with the scientific practice of the 21st century. Bayesian Philosophy of Science thus shows how modeling such attitudes improves our understanding of causes, explanations, confirmatory evidence, and scientific models in general. Their approach combines a scientifically oriented and mathematically refined perspective with conceptual analysis and a particular focus on the methodological problems of modern science, especially in statistical inference, making it a valuable resource for both philosophers and practitioners of science.

The 'American Statistical Association' has supported this change by publishing a special issue of the journal 'The American Statistician', titled “Statistical Inference in the 21st Century: A World Beyond p < 0.05”.[13][13]
🧠 Some of you, exploring this special issue of The American Statistician, might wonder if it is a lecture from pedantic statisticians intent on moralizing about what not to do with p-values, without offering real solutions to the difficult problem of separating signal from noise in data and making decisions under uncertainty. Fear not. In this issue, thanks to 43 innovative and stimulating articles written by forward-thinking statisticians, the help we need arrives.
The volume proposes new ways of representing uncertainty and invites us to move beyond the dependence on the P-value as the sole metric of scientific truth.

Interdisciplinarity

A superficial view might suggest a conflict between the disciplinary rigidity of the 'Physical Paradigm of Science'  The "Physical Paradigm of Science" describes a prevailing epistemological approach in the physical sciences, centered on deterministic models and rigorous experimental methodologies. This paradigm relies on empirical observations and the scientific method to seek universal laws governing natural phenomena.Key Characteristics1. Determinism: Assumes that natural phenomena follow fixed laws, allowing accurate predictions based on initial conditions. 2. Measurability and Reproducibility: Emphasizes quantitative measurements and reproducible experiments to confirm results in different contexts. 3. Isolation of Variables: Focuses on analyzing specific effects by isolating variables, often idealizing systems under controlled conditions. While effective in classical natural sciences, the physical paradigm has limitations in complex fields like neurophysiology, where dynamic interactions and variability challenge deterministic models. Application in Masticatory Neurophysiology: In masticatory neurophysiology, the physical paradigm helps develop basic models but fails to explain emergent behaviors, such as motor unit recruitment in response to complex stimuli. Towards an Integrated Paradigm: Emerging is an "Engineering Paradigm of Science," offering a more adaptive approach that considers complexity, allowing more flexible predictive models that account for non-linear interactions in biological systems and the systemic openness of the Engineering Paradigm of Science  The Engineering Paradigm of Science emphasizes practical applications, interdisciplinary collaboration, and understanding complex systems. It contrasts with traditional deterministic models, focusing instead on solving real-world problems, particularly in fields like biology, medicine, and social sciences.Key Characteristics Problem-Solving Orientation: Prioritizes solutions to complex issues over purely theoretical models. Interdisciplinary Collaboration: Encourages integrating knowledge from various disciplines, enhancing understanding through shared experiences. Focus on Complex Systems: Recognizes emergent behavior and the interconnectedness of system components, acknowledging that outcomes can be unpredictable and non-linear. Iterative Process: Embraces an adaptive approach, refining models based on empirical data and feedback to improve responsiveness.Technological Integration: Applies engineering principles to enhance research design and data analysis, utilizing simulations and computational modeling. Application in Masticatory Neurophysiology In masticatory neurophysiology, this paradigm promotes innovative diagnostic tools and therapeutic approaches. By integrating neurophysiology, biomechanics, and materials science, it provides a comprehensive view of jaw function and dysfunction. The Engineering Paradigm of Science fosters collaboration and innovation, ultimately leading to advances that improve our understanding of complex systems and enhance practical outcomes in various fields.

📘 According to an important European study,[14][14]
📌 In scientific policies, it is generally recognized that problem-solving based on science requires interdisciplinary research. 📌 However, the epistemological processes leading to effective interdisciplinary research are still poorly understood. 🧭 This article aims to outline an epistemology of interdisciplinary research (IDR), particularly for solving "real-world" problems. The focus is on why researchers encounter cognitive and epistemic difficulties in conducting interdisciplinary activities. Based on a study of educational literature, it is concluded that higher education lacks clear ideas about the epistemology of interdisciplinary research and, consequently, how to teach it. It is hypothesized that the lack of philosophical attention to the epistemology of IDR is due to the predominance of a philosophical paradigm of science, defined as the "physical paradigm of science," which hinders the recognition of the deep epistemological challenges of interdisciplinarity both in the philosophy of science and in scientific education and research.🧠 An alternative philosophical paradigm, defined as the "engineering paradigm of science," is therefore proposed, which involves different assumptions regarding aspects such as the purpose of science, the nature of knowledge, the epistemic and pragmatic criteria for accepting knowledge, and the role of technological tools. According to this engineering paradigm, the production of knowledge for epistemic purposes becomes the goal of science, and "knowledge" (theories, models, laws, concepts) is interpreted as an epistemic tool useful for performing cognitive tasks by epistemic agents, rather than as an objective representation of aspects of the world independent of the way it is constructed. This implies that knowledge is inevitably shaped by the way it is constructed. Moreover, the way different scientific disciplines construct knowledge is guided by the specificities of the discipline itself, analyzable through disciplinary perspectives. 🧠 It follows that knowledge and its epistemic uses cannot be understood without at least some understanding of how it is constructed. Consequently, scientific researchers need so-called "metacognitive scaffolding" to assist them in analyzing and reconstructing the processes of knowledge construction and the differences between disciplines. In the engineering paradigm, these metacognitive scaffolding are also interpreted as epistemic tools, but in this case, tools that guide, enable, and limit the analysis and articulation of knowledge production processes (i.e., explain the epistemological aspects of doing research). In interdisciplinary research, such metacognitive scaffolding assist interdisciplinary communication, with the aim of analyzing and articulating how each discipline constructs its own knowledge.

  • interdisciplinarity requires:
  • metacognitive tools ("cognitive scaffolds")
  • common languages between different disciplines
  • flexible epistemological models

Another study proposes an engineering interpretation of knowledge[15][15]
📌 To address the complexity of biological systems and attempt to generate applicable results, current biomedical sciences are adopting concepts and methods from engineering sciences. Philosophers of science have interpreted this phenomenon as the emergence of an engineering paradigm, particularly in systems biology and synthetic biology. This article aims to articulate the presumed engineering paradigm in contrast to the physical paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of "disciplinary matrix," which indicates what constitutes a paradigm. It is argued that the core of the physical paradigm lies in its metaphysical and ontological assumptions, while the core of the engineering paradigm consists of the epistemic goal of producing knowledge useful for solving problems external to scientific practice. 🧠 Therefore, the two paradigms imply distinct notions of knowledge. While the physical paradigm involves a representational notion of knowledge, the engineering paradigm implies the notion of "knowledge as an epistemic tool".
in biomedical contexts: here, knowledge is considered 'an active tool' for solving complex clinical problems, rather than a mere theoretical representation of reality.

🌐 Towards Paradigmatic Innovation

The intersection of these two paradigms not only enriches the scientific method but produces 'Paradigmatic Innovations', which are true epistemological leaps.

🧬As noted by Yegane Guven (2017) [16][16]
📌 In recent years, dentistry has experienced an explosion of scientific and technological innovations that are profoundly transforming both clinical practice and university education; virtual reality, nanotechnology, tissue engineering, personalized medicine, and stem cells are opening new frontiers for diagnosis and treatments, while education integrates biosciences, bioinformatics, and ICT, focusing on research, problem-solving, and experiential approaches; among the most promising innovations: biomimetics, salivary tests, tissue regeneration, and genetic therapies, with the goal of shifting dentistry towards a regenerative and predictive model; accreditation and updating of curricula remain fundamental for training that keeps pace with the times
in her review on digital medicine and dentistry. Innovation often arises from:

  • biological and digital revolutions
  • interdisciplinary contaminations
  • systemic rather than reductionist vision

These changes are not incremental but 'paradigmatic', in the sense that they alter the entire way we think, observe, and treat clinical systems, as much as the masticatory function.

«Interdisciplinarity is not a theoretical luxury but a practical necessity in the medicine of complex systems.»

Dental Malocclusion

"Malocclusion" derives from the Latin 'malum' (bad) and 'occludere' (to close), literally meaning "incorrect closure" of the teeth.[17][17]
📌 Considered the father of modern orthodontics, Angle defined the first classification system for malocclusions (Class I, Class II, etc.), which is still used today to describe the alignment and relationship of teeth; he simplified the design of orthodontic appliances, founded the first school of orthodontics, the American Association of Orthodontists (later AAO), and the first orthodontic journal, and authored the fundamental work "Treatment of Malocclusion of the Teeth" (1887).
Although intuitive, the term “malocclusion” implies a value judgment (“bad”) that is not always supported by functional clinical evidence.

🧪 A PubMed search for the word "malocclusion" yields over 33,000 articles.[18][18]
https://pubmed.ncbi.nlm.nih.gov/?term=%22malocclusion%22
However, searching for “interdisciplinary diagnosis of malocclusion” reduces the results to 245 articles.[19][19]
https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions
If 'Differential Diagnosis' is added to this request, the result drops to only 5 articles.[20][20]
https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions+AND+differential+diagnosis

These data suggest that the concept of "malocclusion" has been overused without adequate functional investigation.

📌 A study by Smaglyuk et al. emphasizes the need for an interdisciplinary diagnostic approach, especially in children.[21][21]
📌 Introduction: The main task of modern orthodontics is to create a balanced and morphologically stable occlusion, in harmony with facial aesthetics and functional adaptation. 🧭 The purpose of the study is to investigate the relationship between dento-facial anomalies and somatic pathologies. Patients and methods: Materials and methods: A bibliographic study was conducted using the Medline and Google Scholar databases. 🧭 Review: The human body is a biological system consisting of interconnected and subordinate elements. Any anomaly in the functioning of this system can cause a functional alteration in a single organ. This principle fully applies to dento-facial anomalies and deformities, whose development is closely related to other pathologies. 🧠 The diagnosis, therapeutic strategy, and prevention of dento-facial anomalies and deformities should be considered in the context of the integrity of the not yet fully formed child's body, recognizing the interdependence between the form and functions of its organs and systems.

«The diagnosis, therapeutic strategies, and prevention of dento-facial anomalies must consider the organism as a whole, especially in developing children.»

📊 Towards "Occlusal Dysmorphisms"

📎 In Masticationpedia, the term "Occlusal Dysmorphisms" is preferred because:

- not all asymmetrical occlusions are pathological

- masticatory function can be preserved even in the presence of asymmetries

- there are neuromuscular adaptations that compensate for discrepancies

👉 This leads to a reflection: 'is it correct to treat all malocclusions?' Not always.

Clinical Case

In the following case, the patient presents:

  • unilateral posterior crossbite
  • anterior open bite

The patient would be a candidate for:

  • orthodontic treatment
  • orthognathic surgery

However, the patient 'refuses therapy' citing normal masticatory function. The dentist explains the long-term risks but respects the decision.

What does this case tell us?

📌 That function can prevail over form. To understand this, electrophysiological tests were performed:

🎯 The results show organic-functional symmetry 'despite the visual malocclusion', suggesting that neuromuscular function can compensate for morphological discrepancies.

Occlusal Dysmorphisms and not Malocclusion... which, as we will see shortly, is a completely different topic.

Discussion

The consideration of the masticatory system as a complex system is further validated in light of recent developments in neurophysiology applied to dental occlusion. Studies conducted on animal models, particularly Sprague-Dawley rats, have shown that even minimal occlusal modifications (e.g., trimming of the mandibular incisor) can induce significant changes in the primary motor cortex of the face (face-M1), with evident manifestations of functional and structural neuroplasticity[22][22]
. 🧠 The modification of dental occlusion can influence oral sensorimotor functions, and not all patients can adapt to restorative treatments. By studying Sprague-Dawley rats, neuroplasticity of the facial primary motor cortex (face-M1) was observed in response to repeated trimming of the mandibular incisors, followed by the restoration of occlusal contacts. The changes, mapped with intracortical microstimulation (ICMS), showed significant differences between cerebral hemispheres in the latency and distribution of motor areas of the tongue and mandible. These results suggest that face-M1 neuroplasticity could be an adaptive mechanism to respond to alterations in dental occlusion.

These cortical modifications include, for example, the variation in tongue activation latency between cerebral hemispheres, the variation in the number of cortical activation sites for the tongue and mandible, and the modification of the depth of the center of gravity of the involved cortical areas. These results suggest that the loss and subsequent restoration of occlusal contacts can alter orofacial motor representations, paving the way for new interpretative models of masticatory function based on adaptive neuroplasticity.

Similarly, it emerges that both the primary somatosensory cortex (face-SI) and the motor cortex (face-MI) play a central role in orofacial sensorimotor integration, participating not only in the initiation and control of voluntary movements (e.g., mandibular opening) but also in semi-automatic movements such as chewing and swallowing [23][23]
🧠 The facial somatosensory and motor cortex regulates automatic and voluntary orofacial movements. Their neuroplasticity allows adaptation or lack thereof to oral changes (such as occlusal alterations or prostheses), influencing the recovery of sensorimotor functions and quality of life, especially in patients with neurological disorders or orofacial pain.

These two cortical areas, although distinct in function, are deeply interconnected: face-MI continuously receives input from face-SI, and together they form the so-called “face sensorimotor cortex”[24][24]
🧠 This article provides an overview of the neural mechanisms involved in the somatosensory and motor functions of the face and mouth and, to a lesser extent, the pharynx and larynx. The focus is particularly on the neural basis of touch, temperature, and orofacial pain, with special emphasis on pain, as it is common in the skin, teeth, muscles, joints, and other tissues of the orofacial region and can cause long-term suffering through various painful states or syndromes. Particular attention is also given to the neural processes that regulate the numerous reflexes and other motor functions of the orofacial area, particularly those related to chewing, swallowing, and associated neuromuscular functions. Only a few details are dedicated to other important functions of the face and mouth, such as smell, taste, and speech.
Their integrated activity is mediated by complex central circuits, which include corticobulbar projections directed to the motor nuclei of the cranial nerves (primarily the trigeminal nucleus), responsible for mandibular muscle activation.

The ability of these areas to undergo plastic reorganization (neuroplasticity) represents a fundamental mechanism by which the nervous system adapts to peripheral changes—such as tooth loss, trauma, or the introduction of prostheses—as well as to sensory stimulations and the learning of new motor skills [25][25].
The range and complexity of orofacial movements require sophisticated neural circuitries that provide for the coordination and control of these movements and their integration with other motor patterns such as those associated with breathing and walking. This chapter is dedicated to Jim Lund whose many research studies have made major contributions to our knowledge of the role of brainstem and cerebral cortex in orofacial motor control. Our own investigations using intracortical microstimulation (ICMS), cortical cold block, and single neuron recordings have documented that the face primary motor area (MI) and primary somatosensory area (SI) are involved in the control not only of elemental and learned orofacial movements but also of the so-called semiautomatic movements such as mastication and swallowing, the control of which have been largely attributed in the past to brainstem mechanisms. Recent studies have also documented that neuroplasticity of the face sensorimotor cortex is a feature of humans and animals trained in a novel oral motor behavior, and that it reflects dynamic and adaptive events that can be modeled by behaviorally significant experiences, including pain and other alterations to the oral environment. Furthermore, our findings of the disruptive effects of the face sensorimotor cortex cold block indicate that the face MI and SI are also critical in the successful performance of an orofacial motor skill once it is learned. Future studies aimed at the further demonstration of such changes and at their underlying mechanisms and their sequence of appearance in the face sensorimotor cortex and associated cortical areas represent crucial steps for understanding the intracortical processes underlying neuroplasticity related to oral motor learning and adaptation. In view of the role that cortical neuronal ensembles play in motor execution, learning, and adaptation (Nicolelis and Lebedev, 2009), these studies should include the properties and plasticity of neuronal ensembles in several related cortical areas in addition to a specific focus on single neurones or efferent microzones within the face MI or SI. As recently noted (Martin, 2009; Sessle et al., 2007, 2009), such research approaches are also important for developing improved rehabilitative strategies to exploit these mechanisms in humans suffering from chronic orofacial pain or sensorimotor disorders.

In light of these data, it is evident that alterations in craniofacial and occlusal morphology—traditionally interpreted through static biomechanical models—must instead be understood from a dynamic functional perspective. The clinical evaluation of the patient cannot therefore disregard an integration of morphology, function, and neurophysiological response. Not every "malocclusion" requires treatment, just as not every "ideal occlusion" guarantees functional well-being.

In summary, trigeminal neuroplasticity emerges as the key to understanding adaptation (or lack thereof) to occlusal modifications. It must guide both diagnosis and therapeutic strategies, inspiring truly personalized rehabilitation protocols. OrthoNeuroGnathodontic treatments and beyond, being based on this systemic vision, represent the most advanced and coherent clinical model to address the challenges of modern dentistry.

Conclusion

.🔁 Before concluding, it is essential to clarify that the 'masticatory system' cannot be considered merely as a simple biomechanical mechanism without connecting it to a neurophysiological control system that essentially determines a 'Complex System'. [26][26]
📌 A complex system is a dynamic multi-component system, composed of various subsystems that typically interact with each other in an interdependent manner, analytically describable through mathematical models. This type of system is studied within the field of complexity theory. A global approach is typically necessary, as it is not possible to analytically resolve all components with their interactions, while it is useful to rely on complex computer simulations to evaluate/analyze the dynamic behavior of each component as well as their mutual interactions, which can be described in a simple or linear manner or non-linear (see dynamic system). Typical of complex systems are the concepts of self-organization and emergent behavior. The assumption of a complex system thus embraces most real physical systems with many components, compared to systems considered "simple," more typical of classical physics.

🧩 This implies that elements such as:

- dental occlusion

- temporomandibular joint

- periodontal receptors

- neuromuscular spindles

- central trigeminal nervous system

do not act in isolation, segmenting the biological system into biomechanical and neurophysiological but in 'synergy', producing an "Emergent Behavior".  The **masseter silent period** (MSP) is a relevant example of emergent behavior in masticatory neurophysiology. This reflex is activated by sudden blows to the chin, leading to a brief cessation of electrical activity in the masseter muscle, and is closely related to the recruitment of motor units. During MSP, there is a specific modulation of motor unit recruitment, regulated by the central nervous system, to respond to external stimuli. In the context of emergent behavior, this reflex is not limited to a single muscle but represents a coordinated response involving synergies between various neuronal centers and antagonist muscles. Mathematically, we can describe the probability P(R) of an emergent response as a function of the input variables x1,x2,,xn that influence the activation of motor units: P(R)=f(x1,x2,,xn) where f represents the non-linear interaction between incoming stimuli (such as the type and intensity of the blow to the chin) and the central integration processes of the trigeminal system. This model helps to understand how MSP reflects an integrated and adaptive response that emerges from complex neurophysiological circuits rather than from a single neural pathway.

📚 An important conceptual synthesis is represented by the work of 'Kazem Sadegh-Zadeh', "Handbook of Analytic Philosophy of Medicine", which describes medicine as a systemic science.[27][27]
📌 Medical practice is practiced morality and clinical research belongs to normative ethics. This book clarifies and develops this thesis: 1. analyzing the structure of medical language, knowledge, and theories; 2. investigating the foundations of the clinical encounter; 3. introducing the logic and methodology of clinical decision-making; 4. suggesting comprehensive theories on organism, life, and psyche; on health, disease, and pathology; on etiology, diagnosis, prognosis, prevention, and therapy; and 5. investigating the central moral and metaphysical issues in medical practice and research.

🧠 The elements of the masticatory system are consistent with the activity of the central trigeminal nervous system, as evidenced in electrophysiological tests. This reinforces the idea that "Malocclusion" is an 'insufficient heuristic category': the correct term is "Occlusal Dysmorphism".

«Recognizing the masticatory system as a "Complex System" does not exclude the validity of orthodontic or prosthetic therapies, but enriches them, promoting a functional and neurophysiological perspective.»

🏁 In this context, 'OrthoNeuroGnathodontic' treatments emerge as paradigmatic: they integrate aesthetics, function, and neurosciences to achieve:

- occlusal stability

- prevention of relapses

- functional resilience

📖 Recent studies confirm the importance of post-therapy stability:[28][28]
📌 Comparing the post-surgical skeletal stability between counterclockwise rotation (CCWR) of the maxillomandibular complex (MMC) and clockwise rotation (CWR) of the MMC for the correction of dentofacial deformities. Materials and methods: To achieve the study's purpose, we designed and implemented a systematic review with meta-analysis based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A search strategy was developed and a search was conducted in major databases – PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) – to find all relevant articles published from the beginning until March 2016. Inclusion criteria were randomized controlled clinical trials, controlled clinical trials, retrospective studies, and case series, with the aim of comparing the post-surgical stability of CCWR and CWR of the MMC. 🧪 The analysis was performed using lateral cephalometric analysis of mean post-operative values and the correlation between surgical and post-operative changes in the occlusal plane angle and linear changes in points A and B. A weighted mean difference analysis was performed using a random-effects model with 95% confidence intervals. Results: A total of 133 patients were enrolled from 3 studies (CCWR, n = 83; CWR, n = 50). 🧪 All included studies had a moderate risk of bias. 🧠 There was a statistically significant difference between CCWR and CWR of the MMC in post-operative changes in the occlusal plane angle (P = 0.034), but no statistically significant difference was found in the correlation between surgical and post-operative changes in the occlusal plane angle in the 2 groups. No statistically significant difference was found between CCWR and CWR of the MMC regarding stability between immediate post-surgical and longest follow-up evaluations, concerning vertical and horizontal positions at points A and B (P > 0.05). Conclusion: CCWR, compared to CWR, for the correction of dentofacial deformities in the absence of pre-existing temporomandibular joint pathologies, is skeletally stable concerning post-surgical changes in the occlusal plane, as well as vertical and horizontal changes in the maxilla and mandible
[29][29]
📌 The stability of bilateral sagittal split osteotomy (BSSO) is an important goal for every surgeon. The article examines the factors influencing the stability of the surgical outcome. Particular emphasis is given to the different types of fixation of bone fragments. Their advantages and disadvantages in clinical use are discussed. 🧠 Recurrence after BSSO is generally classified as early and long-term. Early recurrence is usually caused by movements at the osteotomy site or failure of the temporomandibular joint and should be defined as surgical dislocation. Long-term recurrence occurs due to progressive condylar resorption of the temporomandibular joint, causing a loss of condylar and mandibular ramus height. Four different types of fixation in orthognathic surgery have been described: rigid intermaxillary fixation, osteosuture, osteosynthesis, and fixation with biodegradable materials.


📌 This paradigm 'does not replace' classical models, but 'extends them', creating a bridge between biomechanics, neurosciences, and systemic medicine.

What do we mean by “Complex Systems” when we talk about masticatory functions?

📌 Epistemological Premise: Language Before Complex Systems

Even before addressing the definition of complex systems in medicine, it is necessary to reconsider the way we use and interpret medical language, both on the semantic and formal levels.

In particular, the epistemic structure of medical language presents deep conceptual ambiguities: concepts such as disease, normality, function and adaptation are often assumed to be invariant, despite being historically and culturally determined.

As Kazem Sadegh-Zadeh emphasizes in his monumental work Handbook of Analytic Philosophy of Medicine, the language of medicine is intrinsically fuzzy: many of its definitions operate on gradual and non-binary categories, where semantic imprecision is not a limitation, but a structural component of clinical knowledge.[30][30]
🧠 Medical practice is practiced morality and clinical research belongs to normative ethics. This book clarifies and develops this thesis: 1. analyzing the structure of medical language, knowledge, and theories; 2. investigating the foundations of the clinical encounter; 3. introducing the logic and methodology of clinical decision-making; 4. suggesting comprehensive theories on organism, life, and psyche; on health, disease, and pathology; on etiology, diagnosis, prognosis, prevention, and therapy; and 5. investigating the central moral and metaphysical issues in medical practice and research.

Similarly, Eric Cassell has shown that the concept of disease cannot be reduced to either a biological dysfunction or a mere statistical deviation: it is rather the result of a semantic negotiation between patient, clinician, and cultural context.[31][31]
🧠 The issue of suffering and its relationship to organic diseases has rarely been addressed in the medical literature. This article offers a description of the nature and causes of suffering in patients undergoing medical treatment. A distinction is made, based on clinical observations, between suffering and physical discomfort. Suffering is experienced by people, not just bodies, and originates from challenges that threaten the integrity of the person as a complex social and psychological entity. Suffering can include physical pain, but it is not limited to it. The relief of suffering and the cure of disease must be considered as two complementary duties of a medical profession truly dedicated to the care of the sick. The inability of physicians to understand the nature of suffering can lead to medical intervention that (although technically adequate) not only fails to relieve suffering but becomes itself a source of suffering.

Finally, the biopsychosocial model of George Engel proposes to interpret every clinical event within a multi-level network of meanings—biological, psychological, social, and semantic—anticipating that systemic and complex vision that is now at the center of contemporary medicine.[32][32]
The dominant model of disease today is biomedical, and it leaves no room within tis framework for the social, psychological, and behavioral dimensions of illness. A biopsychosocial model is proposed that provides a blueprint for research, a framework for teaching, and a design for action in the real world of health care.>/Small>

«Thus, only after clarifying the meta-linguistic and meta-conceptual nature of the terms we use, can we coherently and productively address the theoretical and clinical challenge of complex systems in medicine.»
Bibliography & references
  1. Latin for 'from the beginning'
  2. Heft MW, Fox CH, Duncan RP, «Assessing the Translation of Research and Innovation into Dental Practice», in JDR Clin Trans Res, 2019».
    DOI:10.1177/2380084419879391 
  3. «Exposure Science in the 21st Century. A Vision and a Strategy», National Research Council, Division on Earth and Life Studies, 2012».
    ISBN: 0-309-26468-5 
  4. Liu L, Li Y, «The unexpected side effects and safety of therapeutic monoclonal antibodies», in Drugs Today, 2014, Barcelona».
    DOI:10.1358/dot.2014.50.1.2076506 
  5. The term was coined by the Scottish philosopher James Frederick Ferrier, in his Institutes of Metaphysic (1854); see Internet Encyclopedia of Philosophy, James Frederick Ferrier (1808—1864)
  6. David Hume (1711–1776) was a Scottish philosopher.
  7. Srivastava S, «Verifiability is a core principle of science», in Behav Brain Sci, Cambridge University Press, 2018».
    DOI:10.1017/S0140525X18000869 
  8. Evans M, «Measuring statistical evidence using relative belief», in Comput Struct Biotechnol J, 2016».
    DOI:10.1016/j.csbj.2015.12.001 
  9. Amrhein V, Greenland S, McShane B, «Scientists rise up against statistical significance», in Nature, 2019».
    DOI:10.1038/d41586-019-00857-9 
  10. Rodgers JL, «The epistemology of mathematical and statistical modeling: a quiet methodological revolution», in Am Psychol, 2010».
    DOI:10.1037/a0018326 
  11. Meehl P, «The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions», 1997». 
  12. Sprenger J, Hartmann S, «Bayesian Philosophy of Science. Variations on a Theme by the Reverend Thomas Bayes», Oxford University Press, 2019». 
  13. Wasserstein RL, Schirm AL, Lazar NA, «Moving to a World Beyond p < 0.05», in Am Stat, 2019».
    DOI:10.1080/00031305.2019.1583913 
  14. Boon M, Van Baalen S, «Epistemology for interdisciplinary research – shifting philosophical paradigms of science», in Eur J Philos Sci, 2019».
    DOI:10.1007/s13194-018-0242-4 
  15. Boon M, «An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool», in Prog Biophys Mol Biol, 2017».
    DOI:10.1016/j.pbiomolbio.2017.04.001 
  16. Guven Y, «Scientific basis of dentistry», in J Istanb Univ Fac Den, 2017».
    DOI:10.17096/jiufd.04646 
  17. https://it.wikipedia.org/wiki/Edward_Angle
  18. Pubmed, Malocclusion
  19. Pubmed, Interdisciplinary diagnosis of malocclusions
  20. https://pubmed.ncbi.nlm.nih.gov/?term=interdisciplinary+diagnostics+of+malocclusions+AND+differential+diagnosis
  21. Smaglyuk LV, Voronkova HV, Karasiunok AY, Liakhovska AV, Solovei KO, «Interdisciplinary approach to diagnostics of malocclusions (review)», in Wiad Lek, 2019». 
  22. Avivi-Arber L, Lee JC, Sessle BJ. Motor cortex neuroplasticity associated with dental occlusion. J Dent Res. 2015;94(12):1751–9. doi:10.1177/0022034515596345
  23. Avivi-Arber L, Martin R, Lee JC, Sessle BJ. The Face Sensorimotor Cortex and its Neuroplasticity in Health and Disease. J Dent Res. 2019;98(11):1184–94. doi:10.1177/0022034519865385
  24. Iwata K, Sessle BJ. Neural Basis of Orofacial Functions in Health and Disease. J Dent Res. 2019;98(11):1185–1195. doi:10.1177/0022034519865372
  25. Review Prog Brain Res. 2011:188:71-82. doi: 10.1016/B978-0-444-53825-3.00010-3. Chapter 5--face sensorimotor cortex: its role and neuroplasticity in the control of orofacial movements. Barry J Sessle , PMID: 21333803 DOI: 10.1016/B978-0-444-53825-3.00010-3
  26. https://en.wikipedia.org/wiki/Complex_system
  27. Sadegh-Zadeh Kazem, «[https: //link.springer.com/book/10.1007/978-94-007-2260-6 Handbook of Analytic Philosophy of Medicine]», Springer, 2012».
    ISBN: 978-94-007-2259-0 
  28. Essam Ahmed Al-Moraissi, Larry M Wolford.Is Counterclockwise Rotation of the Maxillomandibular Complex Stable Compared With Clockwise Rotation in the Correction of Dentofacial Deformities? A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg. 2016 Oct;74(10):2066.e1-12. doi:10.1016/j.joms.2016.06.001
  29. J Hoffmannová et al.Factors influencing the stability of sagittal split ramus osteotomy. Prague Med Rep. 2008;109(4):286–97.
  30. Sadegh-Zadeh Kazem, «[https: //link.springer.com/book/10.1007/978-94-007-2260-6 Handbook of Analytic Philosophy of Medicine]», Springer, 2012».
    ISBN: 978-94-007-2259-0 
  31. Cassell EJ. "The Nature of Suffering and the Goals of Medicine." The New England Journal of Medicine, 1982. doi:10.1056/NEJM198203183061204.
  32. Engel GL. "The need for a new medical model: a challenge for biomedicine." Science, 1977;196(4286):129–136. doi:10.1126/science.847460.

Template:Apm