Pagina principale
Una pagina a caso
Ultime modifiche
Pagine speciali
Portale comunità
Preferenze
Informazioni su Masticationpedia
Avvertenze
Masticationpedia
Ricerca
Menu utente
discussioni
contributi
entra
Modifica di
Logic of medical language
(sezione)
Attenzione:
non hai effettuato l'accesso. Se effettuerai delle modifiche il tuo indirizzo IP sarà visibile pubblicamente. Se
accedi
o
crei un'utenza
, le tue modifiche saranno attribuite al tuo nome utente, insieme ad altri benefici.
Controllo anti-spam.
NON
riempirlo!
==Medical language is an extended natural language== Language is essential in the medical field, but it can sometimes lead to misunderstandings due to its semantically limited nature and lack of coherence with established scientific paradigms. For instance, terms like "orofacial pain" may have significantly different meanings if interpreted through classical logic rather than formal logic. The transition from classical to formal logic is not just an additional step, but it requires precise and accurate description. Despite advances in medical technology—such as electromyographs, cone beam computed tomography (CBCT), and digital oral scanning systems—there remains a need for refinement in medical language. It's crucial to distinguish between natural languages (like English, German, Italian, etc.) and formal languages (like mathematics). Natural languages emerge spontaneously within communities, while formal languages are artificially created for specific applications in fields like logic, mathematics, and computer science. Formal languages have well-defined syntax and semantics, whereas natural languages, despite having grammar, often lack explicit semantics. To keep the analysis dynamic, an exemplary clinical case will be examined through different language logics: * [[The logic of the classical language|Classical language]], *[[The logic of the probabilistic language|Probabilistic language]], *[[Fuzzy language logic|Fuzzy logic]] and *[[System logic|Logic of System]]. ===Clinical case and medical language logic=== The patient, Mary Poppins (fictitious name), has been receiving multidisciplinary medical attention for over a decade, involving dentists, general practitioners, neurologists, and dermatologists. Her medical history is summarized as follows: <blockquote>At 40, Mrs. Poppins noticed small spots of abnormal pigmentation on the right side of her face. Ten years later, after a skin biopsy during dermatology hospitalization, she was diagnosed with localized facial scleroderma (morphea) and prescribed corticosteroids. By age 44, she experienced involuntary contractions of the right masseter and temporal muscles, which increased in frequency and duration over time. At her first neurological evaluation, her face showed significant asymmetry and hypertrophy of the right masseter and temporal muscles. Various diagnoses were made, illustrating the limitations of medical language.</blockquote> After several investigations—such as anamnesis, stratigraphy, and computed tomography (Figures 1, 2, and 3)—the dentist diagnosed "Temporomandibular Disorders" (TMD).<ref>{{Cita libro | autore = Tanaka E | autore2 = Detamore MS | autore3 = Mercuri LG | titolo = Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment | url = https://pubmed.ncbi.nlm.nih.gov/18362309 | opera = J Dent Res | anno = 2008 | DOI = 10.1177/154405910808700406 }}</ref><ref>{{Cita libro | autore = Roberts WE | autore2 = Stocum DL | titolo = Part II: Temporomandibular Joint (TMJ)-Regeneration, Degeneration, and Adaptation | url = https://pubmed.ncbi.nlm.nih.gov/29943316 | opera = Curr Osteoporos Rep | anno = 2018 | DOI = 10.1007/s11914-018-0462-8 }}</ref><ref>{{Cita libro | autore = Lingzhi L | autore2 = Huimin S | autore3 = Han X | autore4 = Lizhen W | titolo = MRI assessment and histopathologic evaluation of subchondral bone remodeling in temporomandibular joint osteoarthritis: a retrospective study | url = https://pubmed.ncbi.nlm.nih.gov/30122441 | opera = Oral Surg Oral Med Oral Pathol Oral Radiol | anno = 2018 | DOI = 10.1016/j.oooo.2018.05.047 }}</ref> Meanwhile, the neurologist diagnosed "Neuropathic Orofacial Pain" (nOP), minimizing TMD as the primary cause. For objectivity, we refer to her condition as "TMDs/nOP." We are thus faced with several questions that deserve thorough discussion, as they pertain to clinical diagnostics. Medical language falls into a hybrid category—it arises from the expansion of everyday language by incorporating technical terminologies such as "neuropathic pain," "Temporomandibular Disorders," or "demyelination." This evolution does not separate it from the inherent ambiguity of natural language, which often lacks precision in critical contexts. For example, the term "disease," crucial in nosology, research, and practice, remains vague in its definition, which can lead to diagnostic uncertainty. A core question arises: is disease related to the patient as an individual, or does it pertain to the system as a whole (i.e., the organism)? Can a patient who is deemed healthy at a given time <math>t_n</math> coexist with a system that was structurally compromised at an earlier point <math>t_{i,-1}</math>? This perspective urges a reconsideration of disease as an evolutionary process{{Tooltip|2='''Temporal Variability in Diagnosis: A Focus on Rehabilitation Outcomes.''' The concept of temporal variability in health and disease emphasizes that a diagnosis is not static; it evolves over time, influenced by various factors. This is particularly relevant in fields such as dentistry, where initially successful treatments can lead to unforeseen complications years later. Consider a patient, Mr. Rossi, who underwent orthodontic treatment followed by aesthetic rehabilitation, resulting in a perfectly aligned smile. Initially, the treatment appears successful, boosting his self-esteem and oral function. However, after several years, Mr. Rossi begins to experience discomfort and symptoms consistent with temporomandibular disorders (TMD) or occlusal discrepancies, which were not evident at the time of treatment. '''Mathematical Formalism of Diagnosis Over Time:''' Let us represent Mr. Rossi's health status using a function similar to the previous example, focusing on the diagnosis over time. {{Tooltip|(Variables) | Let <math>D(t)</math> be the diagnosis at time <math>t</math>.Define <math>S(t)</math> as the severity of symptoms at time <math>t</math>. and Define <math>T(t)</math> as the effects of treatment that may improve or compromise health status at time <math>t</math>. The diagnosis function can be represented as: <math>D(t) = f(S(t), T(t))</math> where the <math>S(t)</math> captures changes in the severity of symptoms, which may fluctuate based on the long-term effects of initial treatments and <math>T(t)</math> reflects the impacts of previous rehabilitation efforts. Suppose that at time <math>t=0</math> (immediately after treatment): <math>S(0) = 0.2</math> (minimal symptoms) and <math>T(0) = 0.9</math> (high effectiveness of treatment); Then, <math>D(0)= f(0.2,0.9) \approx0.8</math> (successful diagnosis) but at time <math>t=5</math> (5 years later): <math>S(5) = 0.6</math> (increased symptoms) and <math>T(5) = 0.4</math> (decreased effectiveness of treatment). Now we can calculate: <math>D(5) = f(0.6, 0.4) \approx 0.5</math> (emerging diagnosis of TMD)|2}} '''Interpretation''': This example illustrates how an initially successful aesthetic rehabilitation can lead to a change in diagnosis over time, highlighting the importance of continuous evaluation in clinical practice. Recognizing health as a dynamic process requires a proactive approach to diagnosis, particularly in disciplines like dentistry. Integrating this perspective into clinical practice can improve diagnostic accuracy and ultimately enhance patient care.|3=}} rather than a static condition. The dynamic nature of health and disease demands a sophisticated, possibly quantitative, interpretation that factors in temporal variations across biological and pathological systems. <blockquote>The notion of "language without semantics," treated as irrelevant, highlights a significant issue. Language's inherent semantic interdependence is vital for effective communication.<ref>{{Cita libro | autore = Sadegh-Zadeh Kazem | titolo = Handbook of Analytic Philosophy of Medicine | url = https://link.springer.com/book/10.1007/978-94-007-2260-6 | anno = 2012 | editore = Springer }}</ref></blockquote> In short, the debate on whether the patient is ill, or if it is her masticatory system exhibiting pathology, requires a detailed analysis from a medical standpoint. Distinguishing between systemic pathology (masticatory system as a whole) and localized pathology (e.g., TMJ) is key. <center>
Oggetto:
Per favore tieni presente che tutti i contributi a Masticationpedia possono essere modificati, stravolti o cancellati da altri contributori. Se non vuoi che i tuoi testi possano essere alterati, allora non inserirli.
Inviando il testo dichiari inoltre, sotto tua responsabilità, che è stato scritto da te personalmente oppure è stato copiato da una fonte di pubblico dominio o similarmente libera (vedi
Masticationpedia:Copyright
per maggiori dettagli).
Non inviare materiale protetto da copyright senza autorizzazione!
Annulla
Guida
(si apre in una nuova finestra)